Rapid phenotypic and genotypic diversification after exposure to the oral host niche in *Candida albicans*

Anja Forche 1*, Gareth Cromie 2, Aleeza C. Gerstein 3, Norma V. Solis 4, Tippapha Pisithkul 1, Waracharee Srifa 1, Eric Jeffery 2, Darren Abbey #, Scott G. Filler 4, Aimée M. Dudley 2, Judith Berman 5

1Department of Biology, Bowdoin College, Brunswick, ME USA
2Pacific Northwest Research Institute, Seattle, WA, USA
3Department of Microbiology & Immunology, University of Minnesota, Minneapolis MN USA
4Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
5School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

#no affiliation

ORCID for AMD 0000-0003-3644-0625
ORCID for AF 0000-0002-3004-5176
ORCID for JB 0000-0002-8577-0084

Keywords: *Candida albicans*, aneuploidy, loss of heterozygosity, oropharyngeal Candidiasis, hypervariability, colony phenotype

*To whom correspondence should be address:

Anja Forche PhD
Research Assistant Professor
Bowdoin College
Department of Biology
6500 College Station
Brunswick, ME 04011
USA
Email: aforche@bowdoin.edu
Phone: 1-207-725-3365
Abstract

In vitro studies suggest that stress may generate random standing variation, and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo. Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH) and recombination were determined using flow cytometry and ddRADseq. Colony phenotypic changes (CPs) in size and filamentous growth were evident without selection, and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all Chrs (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo. In sharp contrast, following in vitro propagation isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared to in vitro. These hyperdiverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.

Introduction

Candida albicans is a common commensal of the human GI tract and the oral cavity in healthy individuals, and also an opportunistic pathogen, especially in immunocompromised patients (CALDERONE 2012). In healthy people, the fungus is prevented from causing disease by the resident microbiota and the host immune system (LORENZ et al. 2004; RICHARDSON AND RAUTEMAA 2009). However, immune deficiencies or a minor imbalance of the microbiota (e.g.,
through administration of antibiotics) can be sufficient to cause superficial infections. During the course of infection, \textit{C. albicans} encounters many different host environments to which it must adapt rapidly. Furthermore, it must cope with environmental fluctuations in established niches during long-term persistence in the host (\textsc{Staib et al.} 2001). Determining the genetic and phenotypic changes that accompany the establishment of commensalism and the transition to pathogenicity (and hence how they can be prevented) is not known (\textsc{Naglik et al.} 2003; \textsc{Wilson et al.} 2009).

Several studies strongly suggest that \textit{C. albicans} may have a very different arsenal of adaptation mechanisms when in direct contact with the host compared to laboratory conditions. For example, a novel cell phenotype (GUT) is unique to the commensal environment of the gastrointestinal tract (\textsc{Pande et al.} 2013) and several genes (e.g., Cph2, Tec1) are specifically expressed under commensal conditions (\textsc{Rosenbach et al.} 2010). Furthermore, cells in the commensal state express genes that suggest the presence of at least two sub-populations of exponentially growing cells alongside stationary-phase cells. In addition, the expression patterns of several genes are clearly distinct during growth \textit{in vivo} vs \textit{in vitro} (\textsc{Nobile et al.} 2006; \textsc{Vandeputte et al.} 2011; \textsc{Fanning et al.} 2012; \textsc{Lohberger et al.} 2014).

Recent studies in fungi found that genome instability caused by large-scale chromosomal changes, including gross chromosomal rearrangements (GCRs), supernumerary Chr (SNCs), aneuploidy and loss of heterozygosity (LOH), are more frequent under stress conditions \textit{in vitro} and \textit{in vivo} (\textsc{Rustchenko et al.} 1997; \textsc{Selmecki et al.} 2006; \textsc{Coyle and Kroll} 2008; \textsc{Polakova et al.} 2009; \textsc{Forche et al.} 2009a; \textsc{Forche et al.} 2011; \textsc{Hickman et al.} 2013). Aneuploidy in particular has been shown to be one of the mechanisms that can lead to antifungal drug resistance in pathogenic fungi including \textit{Cryptococcus neoformans} and \textit{Candida glabrata} via the increase in copy number of specific genes (\textsc{Selmecki et al.} 2006; \textsc{Polakova et al.} 2009; \textsc{Sionov et al.} 2010). Interestingly, a recent study showed that \textit{C. albicans} forms very large cells in response to acute
micronutrient limitation, in particular to zinc. Cell size has been shown to be correlated with ploidy
(HICKMAN et al. 2013) and the detection of *C. albicans* gigantic cells (MALAVIA et al. 2017) are
consistent with an increase in ploidy as well. In *C. neoformans*, Titan cells are large polyploid cells
that can rapidly produce drug resistant aneuploid daughters upon exposure to the drug
fluconazole (GERSTEIN et al. 2015), supporting the idea that aneuploidy is a common adaptation
mechanism of pathogenic fungi.

Our previous study of ~80 *C. albicans* isolates recovered from the mouse model of
hematogenously disseminated candidiasis (BSI) from mice kidneys (FORCHE et al. 2003; FORCHE
et al. 2009a) provided a first glimpse into the types of genomic changes that *C. albicans*
undergoes at the population level. We discovered higher rates of phenotypic and Chr-level genetic
variation following passage of *C. albicans in vivo* relative to passage *in vitro*. In addition,
missegregation events, including whole Chr aneuploidy and LOH, were positively associated with
altered colony phenotypes (CPs).

The oral cavity is one of the few host niches that is both a commensal and pathogenic
niche (VARGAS AND JOLY 2002; PATIL et al. 2015). *C. albicans* has been found as part of the
commensal microflora in up to two thirds of the healthy population (VILLAR AND DONGARIBAGTZOGLOU 2008; PANKHURST 2013). Oral and oropharyngeal candidiasis can develop as
consequence of developed immunodeficiency (e.g. HIV/AIDS), underlying diseases such as
diabetes, and treatment with broad-spectrum antibiotic, corticosteroids and chemotherapy
(SOBUE et al. ; LYON et al. 2006; LU et al. 2017). In the oral niche, fungal-host interactions are
highly dynamic due to a multitude of factors including the presence of antimicrobial salivary
peptides and the microbiota of bacterial and fungal species that co-exist and compete for nutrients
on epithelial cells (DEMUYSER et al. 2014; JAKUBOVICS 2015) and the highly fluctuating
environmental conditions (e.g., temperature, pH) (PARK et al. 2009). Unexpectedly, we recently
identified haploid, mating-competent *C. albicans* isolates for the first time, and most of these
haploids were recovered after in vivo passage in an oral model of infection (HICKMAN et al. 2013). This extraordinary finding highlights the contribution of and the need for in vivo studies to the discovery of novel aspects of Candida biology in general and of host-pathogen interactions in particular.

To further our understanding on the acquisition of standing variation of C. albicans during infection, we performed experimental evolution of Candida albicans in mice to analyze the appearance of genotypic and phenotypic diversity during passage through the mouse oral cavity for 1, 2, 3 or 5 days using an oropharyngeal model of infection (KAMAI et al. 2001; SOLIS AND FILLER 2012). We found that diversity is rapidly generated after exposure to the oral host niche, and that many of these changes are identified in multiple mice. The overall high within-mouse diversity and multiple changes per isolate was high independent of the duration of infection. Surprisingly, the generation of multiple genetic changes in a single isolate appears to occur with higher frequency than would be expected by random chance alone. Taken together, our results suggest that exposure to the host (and/or the transition from in vitro to in vivo growth conditions) generates highly variable isolates at a frequency 2 orders of magnitude higher than in vitro.

Methods

Isolate maintenance and DNA extraction

Strains used to generate parental strain YJB9318 are listed on Table S1. YJB9318 and recovered isolates were grown on YPD (2% glucose, 1% yeast extract, 1% bacto peptone, 20 mg/L uridine with 1.5% agar added for plate cultures). Gal phenotypes were assessed on MIN-Gal (0.67% yeast nitrogen base without amino acids, 2% galactose, 1.5% agar; only Gal+ isolates grow) and 2-deoxygalactose medium (2DOG; 0.1% 2-deoxygalactose, 0.5% raffinose, glycerol, 1.5% agar; only Gal- isolates grow). All isolates are stored long-term in 50% glycerol at -80°C. DNA extractions were performed as described previously (SELMECKI et al. 2005).
Construction of strain YJB9318

Plasmids and primers used in this study are listed in Table S1. YJB9318 is a derivative of strain RM1000 #2 (Table S1) in which one copy of GAL1 was replaced with URA3 (GAL1/Δgal1::URA3). First, the URA3 marker was amplified from plasmid p1374 with primers 1672 and 1673 (Table S1), and transformed into isolate YJB7617 (RM1000#2) replacing one copy of GAL1 (YJB8742) (LEGRAND et al. 2008). Correct disruption of GAL1 was confirmed by diagnostic PCR using primers 1674 and 1675 (Table S1). To make YJB9318 prototrophic, HIS1 was reintroduced into strain YJB8742 by transforming with plasmid p1375 (pGEM-HIS1) that was cut with restriction enzyme NruI. Diagnostic PCR with primers 728 and 565 (Table S1) confirmed correct integration of HIS1 at its native locus. To ensure that transformation did not cause any genomic changes to the parental strain, single nucleotide polymorphism (SNP) microarrays and SNP/Comparative genome hybridization arrays (SNP/CGH) were performed as described previously (data not shown) (SELMECKI et al. 2005; FORCHE et al. 2009a; ABBEY et al. 2011).

PCR conditions for transformation and diagnostic PCR

PCRs for transformation were performed in a total volume of 50 μl with 10 mM Tris–HCl (pH 8.0), 50 mM KCl, 1.5 mM MgCl₂, 200 μM each dATP, dCTP, dGTP, and dTTP, 2.5 U rTaq polymerase (TAKARA), 4 μl of 10 μM stock solution of each primer, and 1.0 μl of template (p1374). PCRs were carried out for 34 cycles as followed: initial denaturation step for 5 min at 94°C, denaturation step for 1 min at 94°C, primer annealing step for 30 s at 55°C, extension step for 1 min at 72°C, and a final extension step for 10 min at 72°C. Each PCR product was checked by gel electrophoresis for the amplification of the desired PCR fragment. PCR products were purified using ethanol precipitation.

Diagnostic PCR was performed in a final volume of 25 μl with 10 mM Tris–HCl (pH 8.0), 50 mM KCl, 1.5 mM MgCl₂, 100 μM each dATP, dCTP, dGTP, and dTTP, 2.5 U rTaq polymerase, 2 μl of 10 μM stock solution of each primer, and 2.5 μl genomic DNA. PCRs were carried out for
30 cycles as followed: initial denaturation for 3 min at 94°C, denaturation step or 1 min at 94°C, primer annealing step for 30 s at 55°C, extension step for 1 min at 72°C, and a final extension step for 5 min at 72°C. Five microliters of PCR product was run on a 1% agarose gel to verify that the fragment was of the appropriate size.

Model of oropharyngeal Candidiasis (OPC)

The OPC model was essentially performed as described previously (SOLIS AND FILLER 2012). Briefly, six week old male BALB/c mice (21-25 g; Taconic Farms) were immune-suppressed with cortisone acetate (225 mg/kg, Sigma) on days -1, 1, and 3 of infection. For inoculum preparation, strain YJB9318 was grown in MIN-Gal medium to ensure that no Gal\(^-\) cells arose prior infection. A total of twenty mice were infected with \(1 \times 10^6\) cells of strain YJB9318 (Table 1). Of these, 17 mice survived to the scheduled dates of sacrifice. On days 1, 2, 3, and 5 post-infection (FIG. 1, FIG.S1), 3-5 mice were euthanized. The tongues were extracted, weighted, and homogenized. Next, appropriate dilutions were spread onto YPD agar plates for total CFU counts and onto 2DOG agar plates to determine the number of Gal\(^-\) cells. Recovered isolates were directly picked from the original YPD and 2DOG plates to 96 well plates with 50% glycerol and stored at -80°C to avoid any changes to the isolates not acquired during *in vivo* passage.

To confirm the Gal status of recovered isolates, they were grown overnight in deep 96-well plates containing 300 μl YPD broth. Cultures were washed once with distilled water, 5 μl of each culture were spotted onto 150 x 100 mm YPD plates, MIN-Gal and 2DOG medium, and plates were incubated for 2 days at 30°C to assess growth. The frequency of LOH at the GAL1 locus was determined using the ratio of total isolates recovered (CFUs on YPD) divided by the total number of 2DOG\(^-\) isolates. The *in vitro* frequency of GAL1 loss in strain YJB9318 was measured as described previously (FORCHE *et al.* 2009). Of note, it is difficult to determine growth rates *in vivo* accurately, because of bottleneck effects and because yeast cells and hyphal cells
grow exponentially and linearly, respectively. Therefore, frequencies and not rates were used to
compare in vitro versus in vivo GAL1 LOH events.

Assessment of CPs and selection of isolates for genotypic analysis
Previously, we showed that isolates with missegregation events (whole Chr aneuploidy and whole
Chr LOH) exhibited CPs consistent with slow growth and abnormal filamentous growth (FORCHE
et al. 2005; FORCHE et al. 2009). To increase the ability to identify genotypic changes, we plated
all isolates for CPs on YPD at 30°C and scored single colonies after 3 days. CPs were determined
for colony diameter (smaller or larger than parental strain, first number) and filamentous growth
(degree of wrinkling compared to parental strain, second number) resulting in a binary code for
each of the 7 unique CPs (see FIG.2D for representative images). For further genotypic analysis,
all isolates with altered CPs (6 Gal+ and 158 Gal−), and isolates with parental CP (148 Gal+ and
116 Gal−) from a total of 17 mice were chosen to yield a set of 429 isolates (FIG.S1, Table S2).

Determination of ploidy by flow cytometry
Ploidy of all recovered isolates was determined as described previously (ABBEEY et al. 2011).
Briefly, each isolate was streaked out to single colony onto YPD plates and incubated for 3 days
at 30°C. Single colonies were transferred to deep 96-well plates containing 0.6 ml of YPD and
cultures were grown overnight (16 hrs) at 300 rpm to stationary phase. Fifty microliters were
transferred to new deep 96-well plates containing 250 μl YPD broth, and cultures were grown for
6 hrs at 30°C at 300 rpm. Two hundred fifty microliters of culture was transferred to round bottom
96-well plates, cells were spun down at 1,000 rpm, and resuspended in 20 μl of 50:50 buffer (50
mM Tris HCl, pH 8.0, 50 mM EDTA, pH 8.0). To fix cells, 180 μl of 95% ethanol was added to
each well. Cells were treated with 0.1 μg/ml RNase (1 hr at 37°C) and 5 mg/ml Proteinase K (30
min at 37°C) followed by staining with SybrGreen for 1hr in the dark. After a final wash in 50:50
buffer, cells were resuspended in 50:50 buffer and run on a flow cytometer (FACSCALIBUR). A
customized MATLAB script was used to calculate ploidy for each isolate using a diploid and a tetraploid isolate as controls (ABBey et al. 2011).

Whole genome karyotyping using double digest restriction site associated DNA sequencing (ddRADseq)

ddRADseq was carried out essentially as described previously (Ludlow et al. 2013) using the restriction enzymes MfeI and MboI. Sequencing was carried out on the HiSeq 2000 and NextSeq (Illumina) platforms using paired end reads with each read of length between 39 and 50 bases, depending on run. For each lane of Illumina sequencing (up to 576 isolates/lane), raw read sequences were split into isolate-specific pools based on their associated 6 bp TruSeq multiplex and 4 bp inline barcode sequences, allowing 1 mismatch in the i7 barcodes and no mismatches in the inline barcodes. A minimum barcode quality of Phred = 20 was applied to all bases of the inline barcode. Reads were then aligned to the C. albicans reference (SC5314 v. A21-s02-m04-r01) using BWA (v.0.7.5) allowing 6 mismatches and quality trimming using the parameter -q 20. Because of poor base calling quality in the initial low-complexity (restriction-site) regions of reads from the NextSeq, six base pairs were trimmed from the beginning of all NextSeq reads, and this offset was recorded for identifying the position of the restriction site. The SAMtools (v.0.1.17) (Li et al. 2009) mpileup command was then used to create a pileup file for each isolate, using the -q 20 and -C 50 parameters. From the pileup file, the count of all observed bases at each covered reference position was calculated. Normalization to the euploid parent controlled for both associated restriction fragment length (which has a large impact on read depth) and GC content.

Local copy number estimation from ddRADseq

From the aligned-read SAM file, the position of the restriction site end of each read was determined (5’ end of forward reads, 3’ end of reverse reads), using the 6 bp NextSeq offset for NextSeq samples. Only reads with a Phred-scaled mapping alignment quality of at least 20 were
considered. The occurrence of each end position was then counted resulting in a set of marker positions for each isolate along with the number of reads aligning to each of those positions. For all isolates in a sequencing run, a matrix of observed read counts at all positions was generated. Because of the long tail of infrequently observed sites, counts of 1 were treated as counts of zero. This counts matrix was also used to calculate the proportion of all reads in each isolate aligning to each Chr.

Using a custom R script (Suppl. File 1), first the matrix of counts was edited to remove any isolates with ≥ 95% positions with 0 counts. Following this, marker positions were filtered to only include those occurring in >50% of remaining isolates. The edited count matrix was used to estimate relative copy number at each marker position as follows. Each isolate was normalized for depth of sequencing by dividing all observed counts by the median value of all counts > 0. To control for marker-to-marker variation in coverage (largely due to the size of the associated DNA fragment), normalized coverage at each marker in each isolate was divided by the median coverage (ignoring zero values) of that marker across a set of control euploid isolates. Markers called in ≤ 80% of euploid controls were dropped. Before plotting, globally noisy markers, with standard deviations (of the log normalized coverage ratios) > 0.5 across all isolates, were removed and for each isolate a minimum raw count coverage of 10 or 20 was required at each position to remove low-confidence estimates for that isolate.

Ploidy was also assessed on a by-Chr basis as follows. Starting with the aligned read proportions per Chr (see above), values for each isolate were normalized by dividing each Chr value by the median Chr value across a set of euploid control isolates. To account for variation in genome size in aneuploidy isolates, the value for each Chr was normalized (by dividing the median value for Chrs in that particular isolate). For euploid isolates this should produce values of ~1 across all Chr. A diploid with one trisomic Chr would have a value of ~1.5 for one Chr and 1 for the rest. To convert these estimates to Chr copy numbers, they were multiplied by factors from 1.5:5.5 in increments of 0.1 and the factor producing the lowest root mean square deviation from the nearest
whole numbers was chosen. After multiplication by this factor, Chr copy numbers were rounded to the nearest whole number. For strains known to have a median Chr copy number other than 2 the set of factors was replaced by the preset median copy number +/- 0.5 in increments of 0.1. For large copy number variant regions ("segmental aneuploidy"), the copy number pattern across the Chr (maximum of 3 segments per Chr) was identified by visualization of the marker-level copy number estimates (see above). The end-points of the segments were then estimated by maximum likelihood based on the probability density of the observed normalized log coverage ratios estimated from normal distributions with means equal to the log of each segmental copy number and with a common standard deviation. The common standard deviation was estimated for each isolate from the genome-wide log coverage ratio data using a sliding window of 11 markers.

Estimation of Allele Ratios

Heterozygosity was assessed at all sites heterozygous in parental strain SC5314 (MUZZEY et al. 2013) ignoring indels. For each Chr, SC5314 heterozygous sites were identified by aligning the two phased haplotypes ("A" and "B") from (MUZZEY et al. 2013) using the Mummer (v3.22) nucmer command with the parameters -c 100 -l 10 -b 200 (DELCHER et al. 2002). Alignments were filtered using the delta-filter command with the -g parameter and snps were then called using the show-snps command with the parameters -r -C -H -T. In each isolate, for every expected het site covered by reads, the counts of the two expected alleles were extracted from the count of all observed alleles.

The following steps were carried out by a custom R script (Suppl. File 1). The binomial probability of the observed counts was calculated using models 1A:0B (homozygous A), 3A:1B, 2A:1B, 1A:1B, 1A:2B, 1A:3B and 0A:1B (homozygous B). For example, for model 3A:1B the binomial probability of the observed data would be calculated based on \(P(A) = 0.75, P(B) = 0.25 \). For the homozygous models, observed counts of the “wrong” allele were assumed to be errors with a probability of 0.01, with the expected allele having a probability of 0.99. For each site, the
set of possible models was constrained based on the copy number of the Chr (or Chr segment),
estimated as above. For disomic Chrs, models 1A:0B, 1A:1B and 0A:1B were compared and the
best and second best models identified. For trisomic Chrs, the best and second best models were
identified from models 1A:0B, 2A:1B, 1A:2B and 0A:1B. For tetrasomes, the models compared
were 1A:0B, 3A:1B, 1A:1B, 1A:3B and 0A:1B. For any other copy number (i.e. 5 or above), the
best of all 7 models above was compared to the second best and then final models were displayed
as HomA, A>B (3A:1B or 2A:1B), 1A:1B, A<B (1A:2B or 1A:3B), HomB. After identification of the
best model, for each site in each isolate a LOD score (Log10 P (Best Model)/P(Second Best
Model)) was calculated. For each dataset, markers were removed unless they were classified as
heterozygous (best model = 1A:1B with LOD > 1) in at least one isolate. For visualization, a
median sliding window of size 7 was applied to the best model values, ordered by genome position
and colored by Chr/segment copy number and best model.

To obtain insight into the actual frequency of CPs and genotypic changes for the total
number of CFUs counted and not just for the number of analyzed isolates, we calculated the
frequencies of phenotypic and genotypic changes for Gal+ and Gal- isolates based on the total
number of C. albicans CFUs from the OPC experiment (852220 (8.52 x 10^5), the number of Gal+
(851270 (8.51 x 10^5; 99.89%), and the number of Gal- cells (913 (9.5 x 10^2; 0.11%)). Extrapolation
showed that the actual frequency of Gal+ CP was 3.9 x 10^{-2} (~1/400 cells) and ~5.8 x 10^{-4} for Gal-
+CP (~6/10,000 cells) (FIG.S1). The frequency of genotypic changes (Chr1 changes excluded)
for Gal+ cells was 13 x 10^{-2} and 5.2 x 10^{-4} for Gal- cells. (FIG.S1).

Diversity index
ddRADseq data was used to determine the number of unique karyotypes that were present in
each mouse and the number of colonies that exhibited each karyotype. A karyotype was
considered unique if there was either a unique whole or partial Chr aneuploidy or LOH event
and/or there was variation in the LOH breakpoint, compared to other colonies isolated from the
same mouse. Diversity was then calculated as Simpsons index \((1 - \sum p_i^2)\) (SIMPSON 1949), where
\(p_i\) is the proportional abundance of each colony type (note that if there is only one karyotype,
diversity is 0).

Data availability

ddRAD-seq data have been deposited at NCBI SRA under accession numbers PRJEB24827,
PRJEB24934, PRJEB24935, and PRJEB24966. Supplemental Figures 1-6 and Supplemental
Tables 1-6, and Supplemental File 1 have been uploaded to figshare.

Results

To analyze diversification rates of *C. albicans* on a mucosal surface, we seeded the oral cavity of
20 corticosteroid-treated mice with \(10^6\) cells originating from YJB9318, a single, colony-purified
C. albicans strain that was heterozygous for *GAL1* (GORMAN et al. 1992). Groups of 3-5 mice
were sacrificed on days 1, 2, 3 and 5 and isolates were recovered from tongue homogenates
(FIG. 1 and S1). Initiating the experiment with a *Gal*+/− strain enabled us to acquire evolved
isolates from both YPD plates (*Gal*+, 541 colony isolates, no selection, unknown genomic
changes) and 2-deoxygalactose (2DOG) plates (*Gal*-, 360 colony isolates, minimum genomic
change of LOH at the *GAL1* locus) (FIG. 2A and S1). All recovered isolates were first screened
for changes in colony phenotype (CPs) and we identified 7 distinct CPs, 3 of them were also
detected among *Gal*+ isolates and all 7 were detected among *Gal*− isolates (FIG. S1, Fig.2, and
see below). As measured by flow cytometry, the majority (72%) of isolates retained a diploid
genome content (FIG. 2B). Strikingly, eleven isolates had haploid or near-haploid genome (2%)
content. An additional seven isolates were tetraploid or near-tetraploid while the remainder (26%)
had ploidy values consistent with aneuploid diploids (Table S2).
Twenty-four hours after infection, the oral fungal burden was approximately 10^2 CFUs per g tissue, suggesting that only a small proportion of the starting inoculum initiated the oral infections (FIG. 2A). The number of CFUs generally increased with time of infection and the proportion with CPs increased slightly (Table 1). The proportion of Gal1-CFU increased proportional with the total CFU (measured by comparing the frequency of 2DOGR isolates and YPD isolates). The overall frequency of LOH at GAL1 was two orders of magnitude higher in vivo compared to in vitro (FIG. S2). Ploidy changes were much more prevalent in the isolates selected for GAL1 LOH (FIG. 2B) compared to isolates from YPD and non-diploid isolates were frequently associated with reductions in both colony size and filamentous growth (FIG. 2D).

Genotypic diversity by RADSeq

ddRADseq analysis was used to analyze Chr copy number and allele frequencies from 154 isolates from YPD and 275 isolates from 2DOG. The overall diversity was calculated using Simpson's index of diversity (1-D) (see methods) for each mouse. The within-mouse diversity was variable at day 1 and remained high thereafter (FIG. 2C). This suggests that diversity was generated early after infection and was not highly deleterious to survival and growth within the host.

We then clone-corrected the data set based upon the assumption that isolates with identical genotype and CP from the same mouse were likely to be daughter isolates resulting from a single mutational event. When the same event (genomic change) was found in different mice, we expect that event was either frequent and/or subject to strong selective pressure in the mice and was termed a 'recurrent' event.

Isolates that underwent ploidy shifts based on flow cytometry were re-analyzed by ddRADseq. Interestingly, euploid shifts (the loss or gain of complete sets of Chrs) were extremely rare; only three (of 10 confirmed) haploids and none of the 7 confirmed triploids or tetraploids were euploid (FIG. 3A and B). By contrast, trisomy was detected for every Chr, with higher trisomic
frequencies for smaller Chrs and ChrR (FIG.4A and B) (Table 2, S3). There were seven isolates in which the majority of Chrs (>4) were non-disomic or where Chrs were present in multiple ploidy levels (e.g. monosomy, disomy and trisomy within the same isolate, providing indirect evidence that euploid shifts likely preceded subsequent Chr missegregation events (FIG.3C) (FORCHE et al. 2008; HARRISON et al. 2014; HICKMAN et al. 2015). Importantly, aneuploidy was detected in both Gal⁺ and Gal⁻ isolates (FIG.S3).

Haploids were detected using flow cytometry optimized after detection of an initial haploid isolate from in vitro studies (HICKMAN et al. 2013). The detection of multiple haploid isolates (10/950 2DOG⁺ isolates recovered initially from the mouse oral cavity) was unexpected and exciting. Of note, only three haploids were perfectly euploid, with 7 being near-haploid; all the haploids tested were relatively unstable and readily converted to the autodiploid state (HICKMAN et al. 2015), and data not shown), suggesting additional haploids may have been present in vivo. We identified nine distinct haploid or near-haploid genotypes that were recovered from 6 different mice: 3 single haploids from 3 different mice (Fig.3B), 2 unique haploids from one mouse (D3M2), 3 distinct haploids from one host (D5M5), and 2 identical haploids (D3M1; different CPs but treated as likely clones because this was the only case where we identified the same genotype for two haploids or near-haploid strains within the same mouse) (Table S2). Interestingly, only 3 genotypes were identical between Hickman et al. (HICKMAN et al. 2013) and this study, which suggests that the original isolates were a mixed population (supported by mixed flow cytometry profiles, data not shown) although the instability of haploids may have contributed as well.

Whole Chr LOH was detected for all Chrs, with higher frequencies seen for the larger Chrs (ChrR, 1-3) (FIG.4C, FIG.S4) (Table 2, S3). The frequency of missegregation events is not entirely a function of Chr size, however, as the frequency of events on Chr3 (1.8 Mb), was higher than either Chrs 2 (2.1 Mb) or ChrR (2.3 Mb), which are 2.1 and 2.3 Mb, respectively. Of note, whole Chr LOH of Chrs 2, 4, 6, and 7, was biased towards allele A, consistent with the failure to detect homozygous allele B in haploids or other isolates (FORCHE et al. 2008; HICKMAN et al. 2013; FORD
et al. 2015; HICKMAN et al. 2015; HIRAKAWA et al. 2015; HIRAKAWA et al. 2017). This suggests that the B alleles of these Chrs harbor lethal recessive alleles (FERI et al. 2016) and therefore cannot be entirely lost. We did identify isolates with segmental LOH towards allele B for Chrs2, 4, and 6 (FIG.5A).

GAL1 LOH event characterization

The isolate collection illuminates the diversity of molecular mechanisms that can yield a Gal' phenotype due to loss of the functional allele of GAL1 from the B haplotype of Chr1 (Fig.5B). We classified 264 GAL1 LOH events as either due to missegregation (involving loss of the entire B Chr) or recombination (involving LOH across the subsection of Chr1L encompassing GAL1). Recombination was more frequent than missegregation (67% vs. 33% of the total events respectively) consistent with aneuploidy of large Chrs as rare or deleterious (Fig.5C) (Table S3). Among the Chr1 missegregation events, only the ten A-haplotype monosomies can be explained by a single step process: non-disjunction of the B copy of Chr1 during mitosis, leading to progeny with a single copy of the A homolog. The remaining aneuploids underwent at least two molecular events, either an increase in the copy number of the A version of Chr1 by missegregation, followed by loss of the B homolog, or vice-versa. Missegregation events were much more frequent than recombination on all other Chrs, with whole Chr aneuploidy more frequent on smaller Chrs (Chr4-7) and whole Chr LOH more prevalent on larger Chrs (Chr1-3); on ChrR, whole Chr LOH and whole Chr aneuploidy were equally represented (Fig.5C).

Recombination events were categorized as: 1) LOH covering a Chr arm from the recombination initiation site through the telomere (likely break induced replication, BIR); 2) shorter-range LOH resulting from two crossover events that do not reach the telomere (double crossovers or gene conversions, GC); and 3) segmental copy number variations (CNVs) which includes truncations, amplifications and deletions. Recombination events on Chr1L were dominated by BIR (94%), with GC events implicated in the remainder (6%, Fig.5B and 6). Rare
recombination events also were detected on all other Chr in a few Gal\+ as well as in Gal\- isolates and BIR was far more frequent than GC (Fig.5A and 6).

The sites of recombination across Chr1L appeared relatively randomly distributed between GAL1 and CEN1 (Fig.5B). Four potential hot spot regions were identified by binning Chr1L breakpoints every 50 kb along Chr1L (Fig.S5): two to the right of the GAL1 (at ~450 kb) locus (451-500 kb and 501-550 kb), one between 701-750 kb and the last one between 851-900 kb (Fig.S5, Table S4). Most of these break regions were not near any genome elements known to promote double strand breaks such as transposable elements.

In addition to the missegregation and recombination patterns described above, a small number of complex rearrangements were also detected. These included Chr truncations and recombination events that involved segmental aneuploidies and could only arise through multiple sequential events on a single Chr (Fig.6). Complex events were only seen following 2DOG selection and were most frequent on Chr1 (Fig.6) (see Table S4 for break coordinates). In addition, several isolates had multiple crossover events on Chr1, some of them involving both Chr arms with LOH to AA and BB alleles at different positions (Fig.6). Taken together, these complex genotypes suggest that double-strand breaks (DSBs) were repaired via multiple, distinct mechanisms (see discussion).

Recurrent events

The finding that the same genomic changes appeared in multiple mice supports the idea that these are general responses of the genome to conditions encountered in the oral cavity during early stages of infection. Many missegregation events occurred in multiple mice (Fig.7, S6, Table S5). Homozygosis of Chr1 to the AA genotype was seen in every mouse following 2DOG selection, presumably because this is an efficient mechanism for GAL1 LOH (Fig.4). Other recurrent whole Chr events, such as trisomy of Chr6, which appeared in the Gal\+ isolates as well (Fig.S6), was unexpected. Uniparental disomy of Chr3 and Chr5 trisomy were also prevalent.
Whether these different missegregation events are advantageous during early infection or during the transition into and out of the host, remains to be determined.

Hypervariability in evolved isolates

Multiple combinatorial (i.e., recombination + missegregation) events were most frequent in Gal isolates that also exhibit CPs (Fig. 8A). Not surprisingly, multiple missegregation events were found together much more frequently than multiple recombination events—likely because aneuploidies and LOH arise during concerted Chr loss from tetraploid intermediates (FORCHE et al. 2008; HICKMAN et al. 2015). Recombination events were less prevalent in general and correspondingly the frequency of multiple recombination events was also much smaller.

We previously found that tetraploid isolates that underwent Chr loss yielded progeny with evidence of mitotic recombination that tended to involve multiple events on different Chrs (FORCHE et al. 2008). Combined with our observations of multiple and/or complex changes per isolate (Fig. 5A and B, Fig. 6), this suggests that once an isolate has undergone one mutational change it has an increased likelihood of additional changes. To quantitatively explore this idea, we calculated the frequencies of multiple vs. single events detected in the *in vivo* and *in vitro* samples (data not shown), as well as the frequency expected if each event arose randomly. The frequency of events was significantly greater than random for ≥ 5 changes per isolate for any genome change *in vivo* but not *in vitro* (only ≥ 7 changes was significant) (FIG. 8B and C, Table S4), indicating that in the isolates studied, highly diverse isolates are overrepresented. This implies that rare individuals undergo high levels of recombination that involve multiple Chrs.

Discussion

To understand the evolutionary forces responsible for genomic rearrangements leading to fitter genotypes, one must first identify the types of changes that reshape the genome (CHADHA AND SHARMA 2014). Here, we provide the first population-level study of the standing variation that
arises in *C. albicans* during oropharyngeal candidiasis by analyzing several hundred isolates recovered from 17 mice at different time points during the infection. Importantly, this study design provided the perspective of time within the host. Flow cytometry and ddRADseq of 429 isolates detected many types of events due to missegregation, recombination and multiple events of both types. Our observations of missegregation and DSB-associated changes are consistent with two recent studies of genotypic and phenotypic intra-species variation and the evolution of drug resistance in single isolates of clinical *C. albicans* isolates (FORD et al. 2015; HIRAKAWA et al. 2015). While previous studies provide an important snapshot of ongoing changes in human infections, the lack of multiple isolates per time point makes it very difficult to recapitulate isolate genealogies throughout evolution. Of note, diversity was detectable even one day post infection, suggesting that either changes arise rapidly upon the shift in growth conditions from liquid medium to the mouse and back (JACOBSEN et al. 2008) or that exposure to the host environment for only 24 h of infection is sufficient to induce genotypic changes.

The detection of multiple independent haploid or near-haploid isolates with different genotypes was surprising, suggesting that haploidization repeatedly occurs in the oral cavity. It suggests that haploidization may be advantageous during oral infection, and it could lead to fitness tradeoffs in subsequent generations if there is a shift in the host environment. We previously found Chr missegregation in isolates recovered after passage in a systemic model of infection and after *in vitro* exposure to physiologically relevant stressors (FORCHE et al. 2011). *In vitro*, the length of LOH tracts (short, long, whole Chr) was associated with the type and severity of stress applied. Here, all three types of LOH arose at appreciable frequencies along with high levels of aneuploidy, supporting the idea that *C. albicans* is exposed to significant combinatorial stress in the oral cavity even though it appears to flourish in the oral cavity during oropharyngeal candidiasis.

We detected a positive correlation between specific CPs and Chr missegregation. A large proportion of CPs were small in diameter and had completely smooth or less wrinkly colonies
(Fig.2C), suggesting that they grow less well than the parental strain under the conditions tested and have defects in filamentous growth. This is reminiscent of the slow growth seen for aneuploidy Saccharomyces cerevisiae isolates grown in lab media (TORRES et al. 2007; THORBURN et al. 2013), which is thought to be the result of unbalanced protein stoichiometry, difficulty segregating aneuploidy Chr or higher demands for DNA replication (STORCHOVA et al. 2006; TORRES et al. 2008; PAVELKA et al. 2010; TORRES et al. 2010; BENNETT et al. 2014; HIRAKAWA et al. 2015).

Mutants with filamentation defects cause less damage to epithelial and endothelial cells in vitro (PHAN et al. 2000; TSUCHIMORI et al. 2000; BENSEN et al. 2002). This suggests that the isolates with reduced filamentous growth may not express hyphal-specific genes (e.g., ALS3, SAP4 and SAP6) and/or may not be recognized as readily by the host immune cells. The majority of isolates with small CPs acquired whole Chr aneuploidy, supporting the idea that these isolates may grow slowly under standard lab conditions, yet might have an advantage in vivo (SEM et al. 2016). Interestingly, a subset of isolates recovered after a systemic infection in mice also exhibited aneuploidy and LOH (FORCHE et al. 2009a).

Chr6 trisomy was much more frequent than other aneuploidies, and Chr6ABB was twice as frequent as Chr6AAB. Chr6 harbors multiple members of important virulence gene families, such as secreted aspartic proteases, lipases and adhesins (HUBE et al. 2000; NAGLIK et al. 2004; SCHALLER et al. 2005; HOYER et al. 2008; DJORDJEVIC 2010), the NAG gene cluster important for alternative carbon utilization (KUMAR et al. 2000) and RAD52, a gene important for DSB repair (CIUDAD et al. 2004; CIUDAD et al. 2005). Interestingly, overexpression of Rad52 increased genome instability (TAKAGI et al. 2008). Therefore, an extra copy of RAD52 could potentially lead to increased genome instability and amplification of specific advantageous alleles (e.g. one extra copy of allele A) could promote adaption to specific environments such as the oral cavity. Follow-up experiments will test the effect of Chr6 trisomy on survival, persistence, and virulence of C. albicans in the oral cavity.
DSBs arise from endogenous sources including reactive oxygen species (e.g., produced by immune cells), collapsed replication forks, and from exogenous sources including chemicals that directly or indirectly damage DNA (SHRIVASTAV et al. 2007). The utilization of the GAL1 selection system not only allowed us to identify the major classes of genome changes and to catalogue the types of LOH events that resulted in a Gal⁺ phenotype, but it also enabled us to make hypotheses about the types of mechanisms that are involved in DSB repair. While the majority of LOH was likely the result of BIR with or without crossover, more complex LOH events also arose in a subset of isolates (see Fig.5C). The LOH signatures on Chr1 are consistent with what would be observed after short and long patch mismatch repair using different alleles as repair templates (COïC et al. 2000; MARTINI et al. 2011; BOWEN et al. 2013). Furthermore, more than one mismatch machinery may have been involved in repairing breaks. Strikingly, similar LOH signatures were observed during mitotic DSB repair in S. cerevisiae (GUO et al. 2017; HUM AND JINKS-ROBERTSON 2017), suggesting that these mechanisms may have been conserved through evolution.

Whether genotypic variation arises through the parasexual cycle or via mitotic defects followed by Chr missegregation accompanied by recombination events remains an outstanding question. Our previous analysis of parasexual progeny showed that the majority of them were aneuploid, that Chr missegregation predominated, that changes were observed for multiple Chrs and that several isolates had short recombination tracts on multiple Chrs (FORCHE et al. 2008). A more recent study examined 32 parasexual progeny generated in vitro for a wide range of virulence-associated traits and showed that parasexual mating can generate phenotypic diversity de novo, and has important consequences for virulence and drug resistance (HIRAKAWA et al. 2017). Direct evidence for the parasexual cycle in vivo, however, remains elusive and the mechanism of mitotic failure followed by Chr loss events cannot be ruled out (HARRISON et al. 2014).
Importantly, here we identified a substantial level of highly variable isolates, higher than what one would expect by random chance alone. We hypothesize that hypervariable subpopulations may be present in many natural populations, and that this diversity can enable rapid adaptation in time of stress or environmental stochasticity. Whether the observed changes are beneficial, detrimental or neutral remains to be determined, and is likely to be specific to the particulars of the environment. The link between how specific genotypic changes affects survival, persistence, and the virulence potential of *C. albicans*, and whether the host recognizes and responds to this variation remains to be discovered.

ACKNOWLEDGEMENTS

We thank Carter Meyers for assistance with the animal studies. AMD, GC, EJ and AF were funded by NIH grant R15 AI090633 to AF. SGF was funded by NIH grant R01DE022600 and JB was funded by an European Research Council Advanced Award 340087 (RAPLODAPT). ACG was supported by a CIHR Banting Postdoctoral Fellowship.

Figure Legends

FIG.1. Experimental overview of *in vivo* and *in vitro* experiments.

FIG.2. Genotypic and phenotypic diversity arises early during oral infection. A. CPs arise later in the Gal+ group (day 2, left graph) compared to the Gal− group (day 1, right graph) but are not observed *in vitro*. B. Ploidy changes (as measured by flow cytometry) do not arise in the Gal+ group, but do so in the Gal− group with ploidy shifts observed as early as day 1 post infection. C. Simpson’s D is high on average and depends strongly on composition of populations within mice (Gal+/Gal− ration of isolates) left, overall Simpson’s D; right, Simpson’s D by days spent in mice D. Bubble plot shows the number of haploid, diploid or aneuploid isolates (as measure by flow
cytometry) that exhibit indicated CPs determined by growth on YPD at 30°C for 3 days. CP binary
codes are shown in parenthesis (see also Table S2). Bubble size reflects the number of isolates.
Circles, total CFUs, green triangles, CPs.

FIG. 3. Whole genome ploidy shifts are rare.
A. Shown is the ddRADseq whole genome karyotype for parental strain YJB9318. Allele status is
indicated on the top. Bottom half of figure provides copy number for each Chr relative to diploid
parent (1 = 2 copies) Chrs are colored in light grey and black to indicate start/end of each Chr.
Color-coding is used throughout for indicated genotypes. Each dot on the lower part (copy
number) is a copy number estimate for a restriction fragment based on the reads aligning to one
end of the restriction fragment. The dots on the upper part (allele status) are maximum likelihood
estimates of allele ratios at each (sequenced) known SNP site, constrained by the Chr or segment
copy number and smoothed across x number of adjacent sites (see also methods). The colors for
the allele status provide exact genotype for each Chr. Note: This strain background (RM1000 #2)
has a preexisting Chr2L allele A homozygosis and a crossover on ChrR occurred during
generation of the parental strain that was unmasked in isolates that became homozygous (see
red arrow). In the case of whole Chr LOH, the genotype at the centromere was called (see black
arrows). Gaps in allele coverage on Chrs3, 7, and R are due to lack of heterozygosity in the
reference strain SC5314 used for analysis (FORCHE et al. 2004; VAN HET HOOG et al. 2007;
BUTLER et al. 2009). B. Haploids and near haploids exhibit different genotypes, *(strain names in
parenthesis from Hickman et al. 2013), y-axis, Chr copy number, x-axis, Chrs are ordered Chr1-
7, and R. C. Isolates with > 2 ploidies/genome suggestive of ploidy shifts in progress.

FIG. 4. Overview of missegregation events across Chrs. A. Whole Chr aneuploidies include
trisomies and tetrasomies. The number of disomic Chrs from haploids and near haploids is shown
in parentheses. Y-axis: normalized copy number relative to diploid parent. Aneuploid Chrs are
boxed in. Note: Images show single whole Chr aneuploidies for clarity; most isolates carry more
than one whole Chr aneuploidy. B. Single and double aneuploidies are detected both for Gal⁺ and
Gal⁻ isolates. Shown is number of isolates with 1 aneuploidy and 2 aneuploidies that were
acquired in vivo. Chrs are shown from Chr1, Chr2-7, and R. C. Whole Chr LOH more frequently
occurs on larger Chrs 1-3, and R in Gal⁻ isolates. Combinations of whole Chr LOH were not
observed in Gal⁺ isolates.

FIG. 5. Recombination and missegregation events.
B. Location of LOH breakpoints along Chr1 Top horizontal black lines represent the two homologs; black oval represents centromeres, arrows show location of the major repeat sequence; Chr sizes are shown to the right of each Chr. The number of isolates for each genotype are indicated at the left; for Chr1 the numbers are in shades of yellow/brown, with higher numbers shaded darker; cyan, homozygous AA; magenta, homozygous BB; gray, heterozygous AB. Breakpoints were mapped in 25 kb bins. Exact start/end coordinates of break regions can be found in Table S4. Positions 1.6 - 2.8 Mb on Chr1 (indicated with 2 solid vertical black lines) are not shown due to lack of any LOH events across this region. XO, crossover, Maps are to scale C. Crossover-associated events most often lead to GAL1 loss in vivo.

FIG. 6. Complex changes on individual Chrs include multiple recombination events on single Chrs (mostly Chr1), segmental deletions, truncations, and amplifications. For legend, please see Fig.5.

FIG. 7. Recurrent missegregation events are frequent. Calculations were done for mice with C. albicans population size ≥ 12 (9 of 17 mice); bubble sizes reflect the percent mice where the specific missegregation event (indicated on x-axis) was found. For example, whole Chr1 LOH
allele AA and whole Chr6 trisomy were found in all 9 mice (100%). Y-axis, Chr1-7, and R; x-axis, missegregation genotypes.

FIG. 8. Multiple changes (> 5) per isolate are significantly more frequent than what would be expected by random chance alone in vivo but not in vitro A. Multiple combinatorial (recombination (REC) + missegregation (MIS)) events are most frequent in Gal+ with CPs. Percent of multiple event types for Gal+ isolates (top left), Gal+ plus CP (top right), Gal- (bottom left) and Gal- plus CP (bottom right). Y-axis, number of recombination events/isolate; x-axis, number of missegregation events per isolate. Bubble size represents the number of isolates with indicated combinations, e.g. number of isolates that have 1 recombination and 1 missegregation event. Expected versus observed frequencies of changes in vivo (B.) and in vitro (C.). Significance is indicated by ** (p < 0.01).

Supplemental Figures

FIG.S1. Detailed experimental overview. This figure is an expansion of Fig.1 and includes detailed information about the total number of Gal+ (YPD, no selection) and Gal- (2DOG, selection) isolates that were analyzed, that exhibit CPs, and genomic changes. Numbers are parsed by mouse and the time that isolates spent in the mouse (in days). In addition, this figure provides the actual total frequencies for CPs and genome changes determined by extrapolation from the total number of CFUs. “0” indicates that no strains were analyzed, “na” not applicable. Note: Not clone-corrected.

FIG.S2. The frequencies of GAL1 LOH is 2 orders of magnitude higher in vivo. Each open circle represents one mouse (in vivo) or independent in vitro cultures (grown for 16 hrs).
FIG. S3. Single and double aneuploidies are detected for both Gal+ (YPD, no selection) and Gal- (2DOG, selection) isolates. Shown are examples for isolates with 1 aneuploidy (1AN) and 2 aneuploidies (2AN) that were acquired in vivo. ChrS are shown from Chr1, Chr2-7, and R, gray and black colors were used to show start and end of each Chr.

FIG. S4. Whole Chr LOH is more frequent for larger Chr1-3, and R. Shown are examples for whole Chr LOH either toward allele A or allele B and the number of isolates that acquired these specific genome changes. * For ChrS4 and 7 no isolate with a single whole Chr LOH was observed. ChrS exhibiting whole Chr LOH are boxed.

FIG. S5. Mapping of LOH breaks along Chr1L reveals 4 hotspot regions. Each of these regions contains between 15 and 22 breaks and is marked with a red arrow. Breaks were mapped in 25 kb bins due to low resolution of ddRADseq. CEN1, centromere 1

FIG. S6. Missegregation events are highly recurrent across mice. Shown are summaries for 9 mice with N > 12. ChrS are indicated on the y-axis. Mouse IDs are indicated across the top. For each mouse there are two columns of pie charts. The first column shows the number of ChrS that are 1N, 2N, 3N, and 4N with shades of brown going from light (1N) to dark (4N). The right column shows allele status (heterozygous (gray), allele A (cyan), allele B (magenta)).

Table 1. Frequency of colony phenotypes.

<table>
<thead>
<tr>
<th>CP binary code*</th>
<th>Total</th>
<th>Day1</th>
<th>Day2</th>
<th>Day3</th>
<th>Day5</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>N = 429</td>
<td>N = 25</td>
<td>N = 54</td>
<td>N = 195</td>
<td>N = 155</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.8</td>
<td>0.74</td>
<td>0.66</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>01</td>
<td>0.03</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>03</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>12</td>
<td>0.14</td>
<td>0.08</td>
<td>0.06</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>0.02</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>0</td>
</tr>
</tbody>
</table>

*Colony phenotypes, see Fig. 2D for representative images.

Table 2. Summary of missegregation events by Chr.

<table>
<thead>
<tr>
<th>Chr</th>
<th>Whole Chr aneuploidy</th>
<th>WholeChr LOH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>1N</td>
</tr>
<tr>
<td>Chr1</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Chr2</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Chr3</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Chr4</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>Chr5</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>Chr6</td>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>Chr7</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>ChrR</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Number (events) for each genotype are shown separately for whole Chr aneuploidy (1N, monosomic, 3N, trisomic, 4N, tetrasomic) and whole Chr LOH (AA, homozygous allele A, BB, homozygous allele B)

Bensen, E. S., S. G. Filler and J. Berman, 2002 A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1: 77-98.

Gerstein, A. C., M. S. Fu, L. Mukareme, Z. Li, K. L. Ormerod et al., 2015 Polyploid Titan Cells Produce Haploid and Aneuploid Progeny To Promote Stress Adaptation. mBio 6: e01340-01315.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.

Pande, K., C. Chen and S. M. Noble, 2013 Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet advance online publication.

van Het Hoog, M., T. J. Rast, M. Martchenko, S. Grindle, D. Dignard et al., 2007 Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8: R52.

