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Abstract

The complexity of exploratory behavior creates a need for a visualization and analysis tool that will highlight regularities and help
generating new hypotheses about the structure of this behavior. The hypotheses can then be formulated as algorithms that capture the patterns
and quantify them. SEE is a Mathematica based software developed by us for the exploration of exploratory behavior. The raw data for SEE
are a time series of the animal ‘s coordinates in space sampled at a rate that allows a meaningful computation of speeds. SEE permits: (i) a
visualization of the path of the animal and a computation of the dynamics of activity; (ii) a decomposition of the path into several modes of
motion (1st gear, 2nd gear, etc.) and a computation of the typical maximal speeds, the spatial spread, and the proportion of each of these
modes; and(iii) a visualization of the location in the environment of stopping episodes, along with their dwell time. These visualizations
highlight the presence of preferred places, including the animal’s so-called home base, and permits a computation of the spatio-temporal
diversity in the location of stopping episodes. The software also: (i) decomposes the animal’s path into round trips from the home base, called
‘excursions’, and computes the number of stops per excursion; (ii) generates a visualization of the phase space (path + speed, traced in a
three-dimensional graph) of any progression segment or list of such segments; and (iii) produces a visualization of the way places in the
animal’s operational world are connected to each other. SEE also permits the definition and computation of behavioral endpoints across any
section of any database of raw data. The range of applicability of SEE to various experimental setups, tracking procedures, species, and
preparations is addressed in the discussion. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

The view that rat open field behavior is largely stochastic
(e.g. [26]) gave way recently to the realization that it is quite
patterned. A series of studies have shown that this behavior
includes several ethologically-relevant precisely definable
and measurable patterns: when placed in a novel environ-
ment a rat establishes a home base from which it performs
round-trips (excursions) into the environment [20]. These
excursions gradually grow in amplitude, having a slow and
intermittent outbound portion and a fast and continuous
inbound portion. With extended exposure, this velocity
profile changes in a predictable manner [66]. The rat’s
trajectory in the environment consists of several modes of
motion (1st, 2nd and 3rd gears); progression without leaving
Ist gear (lingering) [16] defines what has been previously
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labeled ‘stopping behavior’, and the number of stops per
excursion is constrained by an upper bound [32].

Aspects of this structure have been uncovered in long-
term studies of tame wild rats, hooded laboratory rats in a
variety of environments and contexts, and drug-treated
preparations [21,22,23]; it has also been recently applied
to the phenotyping of mouse behavior [5,17]. To establish
a comparative study of this complex structure, it was
necessary to develop a special tool of visualization and
analysis. This tool would highlight regularities, help gener-
ating new hypotheses, and allow statistical inferences about
the structure of the behavior. While describing this tool, this
paper also provides the reader with a working environment
for exploring his own data of rodent behavior. A Mathema-
tica notebook version of this paper, including visualizations
and animations of mouse behavior, can be downloaded at
http://www.tau.ac.il/~ilan99/

Recent studies demonstrating the vulnerability of
behavioral measures to environmental manipulations [12]
have aroused an interest in ethologically relevant
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parameters of rodent behavior. This is because such
parameters might be more resistant to environmental manip-
ulations. The interest in ethological parameters in behavior
genetics [29], the need for animal models with high ecolo-
gical validity in ethopharmacology [60], and the need for
high throughput phenotyping of mouse behavior [52] all
coincide with our own interest in developing an algorithmic
approach to the ethological study of rodent behavior. The
present study is one in a series introducing this approach. As
such, it is motivated by a search for intrinsic constraints,
which should hopefully show relative stability across
experimental protocols and, thus, provide more reliable
measures in the study of the genome/behavior interface.
Being ethologically motivated, this study does not assume
a priori constructs such as fear, anxiety, learning, or even
investigation (although our software can readily be used
within paradigms involving these constructs). Rather, it
lets these and other constructs emerge as ‘by-products’ of
lower level movement processes. We suspend judgment
about meaning because our main motivation has been to
reveal the function and meaning of behavior on the basis
of its structure [33]. The traveling speed of a rat embodies
its orientation with regard to its home base: slow progres-
sion indicates progression away from home, and fast
progression indicates going back home [65]. An upper
bound on the number of stops per round-trip from home
embodies some form of spatial memory [32], etc. Other
features visualized in this study similarly embody a variety
of cognitive and motivational properties of the behaving
animal.

In the first paper in this series [16], we established the
algorithmic definition and the subsequent classification of
rodent locomotor behavior into three modes of motion. In
the present paper, we use this classification to present some
of the visualization tools developed by us, and describe their
software implementation, which we call SEE (a Software
for the exploration of exploration). We also show how this
low-level classification generates hypotheses about how the
animal occupies the environment, how it connects its
various parts, how it distinguishes between inbound and
outbound trips, etc. The third paper in this series is dedi-
cated to the use of statistical inference for the establishment
of behavioral endpoints that differentiate between two
mouse strains [18,19].

The level at which the behavior is analyzed is that of the
whole animal considered as a moving point. The primary
data are a time series of the rat’s coordinates in space,
sampled at a rate that permits a meaningful computation
of speeds. These data, obtained by an automatic tracking
system, are the input of our software environment.

The first section of this paper is devoted to a review of
some of the already established patterns of rat exploratory
behavior. These patterns provide the articulated framework
within which SEE is implemented. The second section illus-
trates how these patterns and others can be visualized, then
formalized, and finally measured with the help of SEE. The

statistical tools for comparing these measurements across
strains, species, or preparations are described elsewhere
[5,17,18].

In the third section, we discuss the potential use of this
approach in behavioral neuroscience and behavior genetics.
An Appendix provides a formal description of the software
(specification of data objects and operators).

The full implementation of the software is available on
request from the authors.

2. Methods
2.1. The programming environment

The Mathematica software [74] mediates the interaction
with SEE. Mathematica is both a programming language
and a graphical display tool. One can write and save func-
tion definitions, and use them afterwards in interactive
Mathematica sessions. SEE is, thus, nothing but a collection
of function definitions, written in the Mathematica program-
ming language. A prerequisite to the use of SEE is the
smoothing of the data, the computation of speeds and the
computation of the segmentation of the behavior into modes
of motion [16].

Using SEE consists, therefore, of loading the appropriate
function definitions and data, and then interactively visua-
lizing the data or computing numerical attributes of the data
by invoking a pre-defined function. In a more advanced
mode, the user can also add new function definitions as
the need arises. This is the main advantage of working in
such an environment: it enables an easy and unlimited
extension of the capacities of SEE, as new ideas about the
structure of the data (exploratory behavior) emerge.

After presenting the main patterns that were revealed so
far, we will focus on one session of an animal (rat #3, fifth
session) from an experiment with hooded rats in which the
animals were exposed repeatedly to a large arena (6.5 m
diameter) for sessions of half an hour [66]. A few computa-
tions or graphics pertain to all the eight daily sessions of that
animal. In order to give the reader an opportunity to practice
the syntax and the (full) commands that generate each of the
graph types and/or calculations, animations, etc., we present
a working version of this study on the web (see the
Introduction).

3. Background on the structure of exploratory behavior
3.1. Stops

Anyone can see that when a rat or a mouse is placed in a
novel environment it alternates between progression and
stopping. Each time the animal stops it performs scanning
movements—sniffing, establishing snout contact with the
substrate, and/or looking around. The type, rate, and number
of scans presumably determine the amount and type of
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information gathered by the animal. Forward progression
carries the animal from one location to the next, while
stopping and scanning involve investigation of particular
locations [6]. These two patterns constitute locomotor
behavior, a par excellence innate pattern [44]. Only recently
has it been shown that there is an inverse relationship
between these patterns also at the level of the CNS, and
that this relationship is mediated by the hypothalamus
[62]. Clearly, these patterns serve separate and distinct func-
tions, and it is only reasonable to expect that measuring and
quantifying them separately would help differentiate
between species, strains, and preparations.

Because in rodents stopping largely implies scanning, and
scanning implies cessation of progression and stopping,
measuring stopping entails an indirect measurement of
scanning, which in turn implies measurement of information
acquisition and attention-involving processes. The type of a
scan determines the duration and the spatial spread of a
stopping episode: a forward scan involving only the head
and neck is typically shorter in duration than that of a scan
recruiting the whole body, as in ‘stretched attention’. While
performing these scans, the animal’s center of gravity
changes its location; the spatial spread of this change, i.e.
the length of the path traced by the animal on the ground
while performing the scan, is small for head scans and large
for whole body scans that may even involve a step or two.
The number of scans performed during a stopping episode
also affects the duration and the spatial spread of a stopping
episode. All these ethologically meaningful patterns influ-
ence the duration and spatial spread of stopping episodes.
Capturing and quantifying their spatio-temporal features
should, therefore, prove a fruitful phenotyping tool. When
behavior geneticists score rearings (e.g. [13]), and ethophar-
macologists score stretched attention episodes (e.g. [60]),
they capture only the full-blown scans along the respective
vertical and forward so-called collective variables [33], and
lose the vast majority of smaller amplitude scans along the
vertical, forward, and horizontal dimensions. Practically all
of these scans are captured, if only in an indirect and pooled
way, in SEE.

Until recently stopping was defined as a classical beha-
vior pattern based on the observer’s subjective judgment. In
some studies, the definition of a stop was based on an arrest
of the hind legs [32], a criterion that is difficult to measure
automatically. In other studies, it was based on an arbitrary
(though reasonable) threshold value for velocity [11,30],
e.g. if velocity is lower than 2 cm/s call it a stop. In still
other studies ‘the circumscribed movements involving the
processing of localized sensory stimuli’ were captured by
characterizing the overall geometry of the path [55].

Capturing individual stops on the basis of intrinsic
‘natural’ criteria is not a straightforward task. This is
because (i) stopping is not to be equated with arrest, i.e. it
does not necessarily consist of zero speed and (ii) the cutoff
speed values distinguishing between progression and ‘stop-
ping’ differ from species to species and from strain to strain.

To distinguish between stopping and progression, we have
to estimate speeds, i.e. the first derivative of the (noisy)
location data. The derivation further increases the level of
the noise so that smoothing the data becomes even more
essential. On the other hand, because of their ethological
significance, we do not want to lose stops (which are some-
times as short as 0.2 s) in the process of smoothing the data.
For a video clip illustrating the ‘smeared’ nature of stopping
behavior see http\\www.tau.ac.il~ilan99

The steps for establishing the cutoff point between
progression and ‘stopping’ (or lingering episodes, as we
call them), are rather involved, but essential (a user-friendly
stand-alone software package establishing the cutoff point is
available from the authors). The software performs the
following steps: (i) it establishes the noise level of the
system; (ii) it defines ‘sub-noise’ periods as periods of
‘arrest’; (iii) it uses arrest periods to segment the velocity
time series into ‘motion segments’ (‘inter-arrest’ intervals);
(iv) it establishes the speed maxima of each of the motion
segments (we previously used a corresponding measure of
the local spread of motion called ‘local movement’—
‘locmov’ [16]; (v) for each rat-session it computes the
frequency distribution of the speed maxima (or ‘locmov’)
of all its motion segments; (vi) it uses a Gaussian mixture
model to analyze the distribution of these maxima. This
model is commonly used in electrophoresis, for example,
for recognizing distinct components within a mixture (see
Section 1.3.3. in the Appendix); (vii) it estimates the
parameters of the Gaussian model by using the Expecta-
tion-Maximization (EM) algorithm [15]; For a nice exposi-
tion see [25]. This algorithm estimates the maximum
likelihood parameters (proportions, means, and standard
deviations) of a mixture with a given number of Gaussians
(Section 1.3.3 in the Appendix). Having the Gaussians at
hand, it can finally establish the thresholds that distinguish
between them. Most important, it establishes the threshold
that distinguishes between the leftmost Gaussian, represent-
ing the progression mode with the lowest maximal veloci-
ties. It is this component which was termed ‘stopping’ in our
previous studies and is now termed ‘lingering’, ‘staying in
place behavior’, or ‘1st gear mode’; and, finally (viii) bouts
in which the animal alternates between full arrests and
lingering episodes are joined into a single episode of linger-
ing behavior. Therefore, at one extreme, a lingering episode
may consist of an extremely short arrest. At the other
extreme, it may consist of a long bout of low speed segments
that alternate with long and/or short arrests. From our point
of view, both extremes represent single episodes of staying
in place behavior. Strains and species differ greatly in the
consistency of lingering episodes. In the hooded rat whose
behavior is illustrated in this paper, the threshold speed
distinguishing between lingering and progression segments
was 16 = 1.99(SD) cm/s (based on eight successive daily
1/2 h sessions in a 6.5 m diameter arena. In comparison, the
Balb/cJtau mice median of maximal speeds during lingering
episodes, based on a single session of eight animals in a
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Fig. 1. The height of the graph at a particular location in the circular 6.5 m diameter arena represents: left—cumulative dwell time during lingering episodes
(stopping) at that location. Right: number of visits (lingering episodes, stops) to that location. As shown, one neighborhood in the arena, at approximately 12
o’clock stands out from all the other places in the arena in the magnitude of these two measures. This neighborhood is defined as the animal’s home base (here,
there is also a ‘garden’, typically appearing when there are multiple sessions, at 1.00 o’clock).

3.2 m diameter arena, was found to be 3.35 cm/s (2.61, 4.30)
cm/s, whereas that of a corresponding group of C57BL/
6Jtau mice was 5.55 cm/s (4.53, 6.74) cm/s.

3.2. Movement segments

From the categorization of modes of motion described
above, one can obtain a segmentation of the behavior into
intervals of lingering and intervals of progression or move-
ment segments. The path traced during a progression
episode may embody a variety of sensorimotor and perhaps
also cognitive algorithms used by the animal. Golani et al.
[32] showed that hooded rats appear to scale inter-stop
distances according to the size of the arena: when they
encircle the arena with a single excursion they partition
that excursion into a more or less similar number of
segments, be it a 2 X2 m or an 8 X 8§ m arena. This means
that the rat has some global view (see Ref. [28]) of the whole
arena which determines the size of individual segments; it is
not a particular distance that determines when a progression
segment will end, but rather a particular fraction of arena
circumference.

The long non-stop segments performed by hooded rats
during inbound progression segments to home base (Fig. 6,
3rd from left) reveal the attraction exerted by the home base
on the animal. A smooth ballistic speed trajectory of a
movement segment (see in Fig. 10b, trajectory across the
open space) betrays the fact that the segment has been
pre-programmed by the animal at the outset of the move-
ment (in contrast to an intermittent one (foreground trajec-
tory in Fig. 10b), in which the animal, as it were, feels its
way as it proceeds along the arena wall).

Peak velocities of movement segments range in the
presently analyzed rat-sessions between a mean threshold
of 16 cm/s (M — SD =14, M + SD = 18) cm/s and a mean
maximum of 286 cm/s (236, 336) cm/s.

3.3. The home base

When confronted with a novel environment, rats establish
a preferred place, which they appear to use as both a
cognitive and a motivational anchor. Repeated visits to
the home base are used for grooming, a pattern considered
to reduce arousal [14]. These repeated visits perhaps help
the rat manage its level of arousal in a novel and presumably
stressful situation. By measuring the rat’s movements in
relation to the home base, one comes to realize that the
seemingly haphazard roaming of the rat is in fact systematic
and organized.

The rat’s preference for one (or in some cases two)
place(s) can be shown by considering the spatial distribution
of stops in the arena. In the preferred place, the cumulative
duration of staying in place (whether we consider cumula-
tive dwell time of stops or total cumulative time including
both progression and stopping) is of a higher order of
magnitude compared to the values scored in all the other
places (Fig. 1, left). The number of stops is also the highest
(Fig. 1, right), and the incidence of grooming episodes is
significantly higher than expected by the higher proportion
of time spent in that place. This place is termed the rat’s
home base [20].

In an arena devoid of any objects or places that suggest
shelter, each rat establishes its own home base in a different
place, early in the session. This suggests that home base
location involves the use of spatial memory, and is not
selected de novo each time the rat returns to it. If, however,
one object that is clearly more familiar is present, most rats
establish their home base in that place. This property
has been used to standardize home base location, thus
simplifying the comparison across animals [63,65]. Interest-
ingly, home base location relative to the edge of the arena
has been used by Cools et al. [10] as one of the features
distinguishing between Apomorphine-Susceptible and
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Apomorphine-Unsusceptible selected sub-populations of
hooded rats.

3.4. The excursion

Using the location of the home base as a reference point,
it is readily seen that Exploratory Behavior, at least in its
initial stages, can be viewed as consisting of roundtrips
(excursions) performed from the home base. Home base
behavior (including excursions) was previously reported in
rats [1,2,8,20]. It has also been reported in chimpanzees
constructing a cognitive map of a novel arena in a zoo
[46], in infant wild chimpanzees who study the environment
and gain their independence while performing increasingly
longer excursions away from their roaming mothers [69],
and in bulls having a preferred place in the arena, where
they also go to die after having been fatally injured in the
course of a bullfight [47].

When hooded rats were exposed daily to the same large
(6.5 m diameter) arena, excursion length increased both
within and across daily sessions. While each animal had
its own initial excursion length, all animals shared the
same rate of excursion growth, both within and across
sessions. This growth pattern could reflect a strain-specific
capacity to handle the novelty of the environment [65]. A
similar pattern of growth, involving the performance of
increasing loops around a point of origin has been reported
in desert isopodes (Hemilepistus reaumuri) [36—38], in
spiders [49], and in desert ants (Cataglyphis sp.) [51,70].
Its presence in both invertebrates and vertebrates might
reflect a fundamental adaptive cybernetic principle charac-
terizing innate goal directed activities. While it could
embody a familiarization process (a hypothesis examined
systematically in an empirical [65] and a simulation study
[66]) it could also develop on an idiothetic basis by repeat-
ing the same scheme over and over, each time extending its
reach further away from the starting place. This possibility
is supported by studies made by McNaughton et al. [45].

In the rat studies, the excursion was defined as a round-
trip that starts at the home base and ends, usually after the
performance of one to several stops, also at the home base.
Only the number of stops per excursion was scored
(ignoring excursion mileage or duration). Using two robust
statistical methods—density estimators and quantile
plots—it has been shown that the number of stops per
excursion fits a model of uniform distribution with an
upper bound, rather than a model of normal or a geometric
distribution [32]. This means that the probability of return-
ing to the home base increases after each additional stop
until it equals 1 at the upper bound. This supports the
hypothesis that home base location depends on memory,
and returning to it is not elicited de novo at the end of
each excursion. Moreover, as mentioned briefly earlier, by
increasing the size of the arena from 2 X 2 to 8 X 8 m, this
upper bound of stops could not be increased. Instead, the
rats cover the larger arena by scaling up the inter-stop

distances. The distribution of the rate of stopping per time
and/or distance unit may account for many of the measured
properties of Exploratory Behavior. For example, Whishaw
et al. [71] have shown that the hyperactivity attributed to
rats with Fimbria—Fornix lesions is not due to travel
distance and speed, but rather due to the presence of signif-
icantly more stops of shorter duration (and, thus, more
movement episodes). The distribution of the number of
stops per excursion can be modified by the psycho-stimulant
drug p-amphetamine [20], and has also been used to
differentiate between the response of two strains of rats to
amphetamine [11,30].

3.5. Speed profiles

The momentary traveling speed of an animal appears to
both reflect and influence the type of perceptual input mana-
ged by it at that moment. This can provide one with an
insight into its operational world [68]. When, for example,
water shrews (Sorex palustris) kept in a terrarium on
Lorenz’s desk were alarmed, they rushed back home at
top speed along the digressive much longer ‘well trodden
path’, instead of taking the shortest way. In doing so, they
bumped into novel objects that were placed en route, and
jumped over phantom obstacles that were just removed
previously from the familiar path. This indicated that they
used proprioceptive memory rather than being guided by
telereceptors (dead reckoning; [43]). Examination of speed
can, thus, be highly informative about the momentary
sensorimotor algorithms used by the animal.

The speed profile of the excursion undergoes a typical
change in the course of Exploratory Behavior: initially,
the outward part is slow and intermittent while the inward
is fast and ballistic, without stopping [63], as if the home
base exerts an attraction on the rat. With increasing expo-
sure, and particularly in the course of several sessions, the
proximal portion of the excursions becomes repulsive (high
velocity out, low velocity in). It retains its attractive char-
acter (low velocity out, high velocity in) only at the distal
portion of the excursion [65]. These properties were used to
calculate a measure of familiarity for each place in the
environment, and were simulated by a simple dynamical
model [66].

4. Illustrations of the capabilities of SEE

4.1. Visualizing and quantifying exploratory behavior with
SEE

Mathematica having been launched, and the notebook
that contains the definitions of the SEE functions evaluated,
one is in a position to ask the system to perform calculations
and display graphics. As a first step. the files pertaining to a
specific session are loaded: the smoothed time series of
positions and velocities, the segmentation of the data into
episodes of motion, and the categorization of the segments
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Fig. 2. The path of the rat in the arena during its fifth half-hour session. To
improve visibility, arena walls are slightly removed from the path traces.

into lingering, mid speed and high speed segments (see
Appendix 1.3). All the SEE functions now refer implicitly
to these data. We can start looking at the animal’s behavior
by evaluating the command See[Pathplot[{1, Length[-
data]}]] and the system will respond by displaying the
graph shown in Fig. 2. This graph provides some qualitative
information on the way this animal, a juvenile hooded rat,
50 days old, exploring for half an hour a 6.5 m diameter
arena [65] moves during the session. The graph highlights
the fact that the rat mostly moved on the periphery of the
arena, progressing along relatively smooth paths.

Each of the highlighted features suggests a corre-
sponding quantitative measure that might turn out to
be useful by revealing regularity. Currently used open
field measures already include the overall amount of
activity, the ratio of activity spent at the periphery
versus the center of the arena, activity level per fixed
time intervals across the session, and the path’s degree
of meandering [56]. We also can perform these

0-5min

5-10min

measurements with our built-in functions. For example,
Activity[{1, Length[data]}] 455.125 m.

We can also get a finer grasp of the dynamics of activity
by computing it for successive slices of, say, five-minute
intervals, thus portraying the process of occupancy of the
arena: See[Map[PathPlot, TimeSlice[data, 300]].

Here, we already get some qualitative insight: occupancy
does not proceed gradually across the whole session; there
is, indeed, a gradual increase in the area covered by the rat
across the first three 5 min slices, but then there is an
outburst of activity. It is coupled to increased space occu-
pancy and intense exploration of the arena’s center.

Fig. 3 is based on an arbitrary slicing of the path. To
obtain a representation based on intrinsic constraints, it is
first necessary to cleave the path into segments. This is
achieved by first splicing the animal’s trajectory into
progression and lingering episodes. We will return to the
path growth issue after visualizing lingering—the comple-
ment of progression.

The segmentation of the animal’s trajectory into modes of
motion (see background section) allows us to visualize the
locations of lingering episodes (Fig. 4a) See[Pointplot
[StopIndex]].

This graph highlights regions of higher concentration of
lingering episodes, including the home base (on the right of
the 12 o’clock direction). To highlight the low spatial spread
of individual episodes we represent each episode by a line
connecting its beginning and end, rather than by a point
representing the location at which it started (Fig. 4b):
See[PairPlot[lingering]].

As illustrated, in this particular session the rat did not get
very far in the course of any of its lingering episodes (M:
20 £ SD cm; [16]). TimePlot returns the spatiotemporal
distribution of lingering episodes by representing the
dwell time of each episode by a circle centered on the begin-
ning of its respective location (Fig. 4c) See[TimePlot
[lingering]].

10-15min

(0

20-25min

25-30min

Fig. 3. The path illustrated in Fig. 1, partitioned into six successive 5 min slices.
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Fig. 4. a: A representation of all the lingering episodes occurring in the arena within the same half-hour session illustrated above. Each lingering episode is
drawn in the starting location of that episode. Note the higher density of lingering episodes near the home base (between 12 and 1 o’clock). b: The lingering
episodes depicted in Fig. 3a are represented by a segment connecting the starting and end locations of each of them. c: The lingering episodes depicted in Fig.
3a and b are each represented by a circle whose area corresponds to the duration spent in it (dwell time) relative to the overall time spent lingering within that
session. Here, the home base is clearly distinguished as a locus of frequent lingering episodes of long duration.

A more dynamical representation of the process of occu-
pancy in terms lingering is obtained in Fig. 5, by using the
command: See[TimePlot, TimeSlice[lingering, 300]].

This highlights the initial priority of the home base and
the subsequent explosive increase in the spatial scatter
(spread of bubbles in the arena) and temporal scatter
(more evenly spread diameters of bubbles) of lingering. A
numerical expression of this scatter is obtained by a measure
of diversity developed in our lab: it represents the average
distance between every two episodes within a given inter-
val, weighted by the duration distribution (for principles of
measurement of diversity see Ref. [54]. Diversity is defined
as:

n
Z pipjdiJ

ij=1

where p; is the proportion of time spent at stopping place i,

0-5min

15-20min

20-25min

and d, ; is the distance between the location of the i-th and
Jj-th episodes. The summation is, thus, over every possible
pair of stops within an interval [64]. This measure is
designed to increase as a greater distance is ‘covered’, and
as the duration of stopping is distributed more evenly within
that distance (the product of the time proportions is
obviously the largest when p; and p; are equal).

One can easily implement this measure as a Mathematica
function and add it to the set of tools (see Appendix, 1.4)

The diversity numbers corresponding to the bubble
graphs displayed in Fig. 5 would be produced by evaluating
Map|Diversity, TimeSlice[lingering, 300]] {94.0723,
131.645, 193.754, 339.331, 375.662, 273.02}.

As expected upon viewing the dynamic visualizations in
Fig. 5, the fourth and fifth slabs show an abrupt rise in
diversity.

This measure has been originally devised to capture the
developmental transition from restrained to relatively free

10-15min

Fig. 5. A dynamic representation of lingering episodes with their dwell time. Note that the increase in activity in the first four slices is associated with an
increase in Diversity (see text) in the first four slices. Notice however that activity increase from slice 2 to slice 3, whereas diversity decreases, due to a single

long lingering event at 2 o’clock in slice 3.
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Fig. 6. A schematic representation of the movement segments. A line connecting the starting point to the ending point of a segment represents that movement
segment. The first graph on the left represents all the segments in the session. The other graphs represent subsets of this, as specified. The line’s color represents
the maximal speed achieved in that segment: segments whose maximal speed was higher than 190 cm/s are colored in red. This speed is the lower limit of the
upper quartile of the maximal speed’s population. The graphs highlight the high connectivity of the home base, to which many long distance high-speed
segments converge and from which many segments start. As illustrated, departures from the home base involve shorter distances and lower speeds, whereas
high-speed long distance segments characterize arrivals. This is not the case with the next most visited place represented in the rightmost two graphs.

behavior. It is an instructive measure as it reflects the
animal’s freedom of movement in the arena [64].

The visualization suggests the hypothesis that periods of
intense exploration could be better characterized by an
increase in diversity rather than by a mere increase in mile-
age. To examine this hypothesis, all one has to do is apply
the same function to a set of sessions of all the animals in the
experimental population.

The function PairPlot, used before to highlight the spatial
spread of lingering episodes (Fig. 4b) can also be used to
highlight the connectivity between places. Fig. 6 presents
five graphs generated by SpeedPairPlot, a variant of Pair-
Plot, here distinguishing between high (in red), and lower
speed (in black) movement segments. In the leftmost graph,
the command See[SpeedPairPlot[movesegments]] shows all
the segments of motion confounded.

As illustrated, the long-distance, faster progression
segments tend to converge (and diverge) to particular neigh-
borhoods. To examine the connectivity of these neighbor-
hoods in relative isolation, we use the SEE operators that
characterize segments by their ending or starting neighbor-
hood: From[{x, y}, epsilon]: selects the progression
segments whose starting point is at a distance less than
epsilon from {x, y} (which will typically be the center of
one of the preferred places). To[{x, y}, epsilon]: selects the

0 20 40 60 80 100 120
Successive movement segments

Fig. 7. A graph of the successive lengths of movement segments performed
across the fifth half-hour session, smoothed by applying a moving average
with a window of 40 segments.

progression segments whose endpoint is at a distance less
than epsilon from {x, y}.

This allows us to form a preliminary opinion as to
whether specific locations constitute operational places in
the behavioral space of the animal.

Since the rat’s home base stands out as a relatively stable
structure (see Figs. 1 and 4a—c), it is only reasonable to
examine the departures from and arrivals to its neighbor-
hood. The following commands cull out the segments start-
ing or ending at the home base’s neighborhood, here
designated by the coordinates {10, 350}. See[SpeedPair-
Plot[From[{10, 350}, 50]]] generates the departures from
(b), and See[SpeedPairPlot[To[{10, 350}, 50]]] generates
the arrivals to the home base (c). Note the asymmetry
between arrivals and departures (Fig. 6).

The arrivals’ segments reach higher maxima of distance
and velocity (To home base) than the departures’ segments
(From home base). In other words, the rat returned to the
home base non-stop from further away and at higher maxi-
mal velocities than when he left it. A similar examination of
the next most preferred place (two graphs on right) shows
that the arrivals/departures asymmetry does not hold for this
place. PairPlot and SpeedPairPlot reveal the location of
the home base by highlighting its high connectivity to the
environment.

Having used lingering episodes to highlight the animal’s
freedom of movement in the arena (as reflected by connec-
tivity and diversity) we can now return to progression
episodes. The gradual occupancy of the arena, movement
segment by movement segment, can be visualized with
AnimSeg. This is a graphic function generating an anima-
tion of the animal’s path in terms of the ‘current” movement
segment, colored from yellow to red, on the background of
the whole previously traced path in gray.

(For an animated version of this type of graph see
http://www.tau.ac.il/~ilan99/) A property that stands out is
the gradual increase (and decrease towards the end) in
movement segment lengths across the session (Fig. 7).

One feature of SEE is the constant availability of all the
data within the database and the feasibility of using a single
command for producing a synoptic representation of the
dynamics of a particular measure across the session(s). To
obtain the dynamics of movement segment lengths for all of
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Fig. 8. A boxplot summary of the dynamics of the length of movement segments for all the sessions of a given rat. Each box represents the observations within
a five-minute slice in a given session. Six boxes, thus, represent one session; the sessions are ordered from left to right, from earliest to latest. The range
between the bottom and top of each box contains the central half of the data; each box is cut by a line whose height is that of the median of the data; two
whiskers extend from the top and the bottom of each box to the farthest observations that are still no more than two box lengths away from the sides of the box.
Outliers are shown as individual data points. Note the increase in length of movement segments both within and across sessions.

this rat’s sessions we thus use the following command,
requesting BoxPlot graphs for the eight successive sessions,
each daily session represented by six 5 min time slices
(Fig. 8). The function Script loads in turn each of the session
files, performs the specified operations on it, and unloads it.
BoxPlot[Script[Map[Activity, TimeSlice[movesegments,
300]], FileNames[ ‘hooded99_1_*’1]]].

As shown, the increase in segment length is evident in the
values of the medians, in the values of the upper quartiles, in
the value of the upper whiskers, and in the values of the
outliers. In other words, there is an overall increase in the
range of magnitudes of individual progression segments,
both within and across sessions. Some of the questions
that this observation raises are how general is this build-
up in amplitude of individual movement segments? Does
it reflect increased familiarity with the specific arena?
increased habituation to the experimental procedure? An
endogenous property of innate patterns, also documented
in other aspects of exploratory behavior [31,33,42,65]?
Finally, is a similar growth pattern also expressed at the
level of excursions in this rat?

We are, thus, led to partition the half-hour paths into
excursions that start and end at the home base [32,63,65].
Two such successive excursions, bounded by stops at the
home base, are illustrated in Fig. 9 top row. They constitute
the 30th and 31st excursions in the rat’s fifth session, and
they show some of the structure unfolded during the period
in which there was an outburst of activity. We present two

versions of representations of these excursions. In the first,
the current excursion path, proceeding from yellow to red, is
traced on the gray background of the rat’s previous path
history (in that session). Circles whose diameters designate
the respective dwell times represent the stops performed in
that excursion. The limited number of circles per excursion
illustrates the upper bound on the number of stops phenom-
enon summarized in the background section [32].

In the second version, shown in Fig. 9 bottom row, the
same two excursions are represented as a sequence of
motion segments where each segment’s type is designated
by its color: lingering by red, mid-speed segments by green,
and high-speed segments by blue (the segments are by defi-
nition bounded by stops). This colored version of PathPlot,
which is generated by the function TypePathPlot is instruc-
tive because it is difficult, if not impossible, to classify
segments by discerning their speed, either by observation
in real time or by slowing down the video. One’s power of
visual discrimination of these building blocks is greatly
increased by first observing the graph and then the movie
of the same slab of behavior, in normal speed.

We expect this type of graph to highlight differences in
the sequencing of segments.

A full dynamic representation of the rat’s velocity in
reference to its momentary location is provided by Phase-
Plot. This function allows one to actually visualize in 3-d the
animal’s trajectory (Fig. 10).

This type of graph is useful for studying the relationship
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Excursion 30

Excursion 31

Fig. 9. Top row: A representation of the path of the 30th and 31st excursions in the session. The time course is coded by the color (yellow = start, red = end);
superimposed on the path are bubbles representing lingering episodes whose duration is represented by the bubble’s diameter. The path of past excursions is
displayed in light gray, permitting a direct perception of the build up of space occupancy from excursion to excursion. Bottom row: the same 30th and 31st
excursions are represented as a sequence of movement segments where each segment’s type is coded by its color: lingering by red, mid-speed segments by

green, and high-speed segments by blue.

between speed, location, and curvature of the animal’s path.
For example, in both excursions the final movement
segment towards the home base is fast and ballistic; and
crossing of the center involves high speed and no stopping.

Fig. 11 provides an overview of the whole system’s
dynamics presented as a sequence of excursions. Several
features stand out.

1. There is an overall growth in excursion length.

2. Growth proceeds first along the walls (excursions 1-25)
only then into the center (excursion 26 and on).

3. Growth proceeds non-monotonically (an excursion can
be shorter than its predecessor).

4. At a certain point (excursion 26) there is an abrupt burst
of activity involving both the performance of full clock-
wise and counter-clockwise circles.

The overview also highlights other dynamic aspects of the

Fig. 10. A phase space representation of the 30th and 31st excursions. The time course is coded by the color (yellow = start, red = end), and velocity is
represented in blue in the third dimension. The red dashed lines show the projection of some values of velocity on the plane of the path for ease of

interpretation. Both of the excursions are performed counterclockwise.
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Fig. 11. A representation of all the excursions performed in session 5. The excursions are temporally ordered from left to right and from top to bottom. Each
excursion is displayed in color (from yellow = start to red = end) against a light gray background of the cumulative path back to the beginning of that session.

growth process. For example, the aborted incursion appear-
ing in excursion 30 at 9 o’clock foretells the full-blown
crossing through the center occurring in excursion 31 and
later in 33. In other words, a ‘bud’ growing in that direction
precedes the growth of the path in that new direction. Once
again, such observations suggest hypotheses that can be
readily tested on large sets of data, and subsequently used
to refine existing models of the growth process [66].

5. Discussion

Behavior genetics, behavioral pharmacology, and the

neurobiology of spatial memory rely critically on the
relevance, reliability and accuracy of behavioral measure-
ments. Tests such as the Morris Water maze, the elevated
plus maze, and the radial maze provide such measurements
for the examination of already formulated hypotheses such
as the existence and rate of spatial learning, or the presumed
level of an animal’s anxiety. At the present state of knowl-
edge concerning whole-animal unrestrained behavior,
however, it is also necessary to broaden and enrich our
list of hypotheses regarding the structure and functional
meaning of behavior. SEE has been constructed with this
aim in mind. SEE is based on a series of systematically
justified constructs such as the distinction between stopping
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and progressing, the home base, the excursion, inbound and
outbound velocities, spatial spread, diversity, dynamics of
space occupancy, number of stops per excursion, and the
maximal speeds attained within episodes. Each of these
constructs (and additional ones, which are to be added as
new preparations are examined) is defined by a correspond-
ing algorithm. In this way, SEE establishes a framework in
which the functional meaning of structures can be examined
on a more refined level, yet on a large scale, using high
throughput quantities of data on a variety of species, strains
and preparations.

In behavioral pharmacology, measurements are typically
performed in several test situations: the elevated plus-maze
[57], the light/dark test [48], the open field test [35], etc. As
long as all tests yield the same ranking, interpretation of the
results is relatively easy. For example, BALB/cByJ mice
rank higher than C57BL/6J in anxiety related parameters
in four test situations, therefore, BALB/cByJ can be taken
to represent a relatively anxious strain [41]. Interpretation
becomes difficult, however, when uni-dimensional ranking
is not possible, based on a limited set of scores taken in
several test situations [3,7,27,34,59]. Another difficulty in
interpretation stems from the fact that the various test situa-
tions are neither ecologically- nor behaviorally equivalent
[59]. Each of the tests involves a specific range of environ-
mental parameters (light intensity, presence/absence of
walls/cliffs, etc.) and a corresponding range of behavior
patterns ‘which are usually ignored in favor of a (single)
relatively simple pattern’ (e.g. proportion of time spent in
exposed areas; [59]). In the SEE framework, these difficul-
ties are avoided because a whole set of patterns is examined
dynamically within the same range of environmental para-
meters. Within this framework, one can examine the
moment-to-moment relationship between measures, and
repeat the experiment while varying systematically an
environmental or pharmacological parameter. In this way
one should be able to examine the resilience of significant
between-strain differences vis-a-vis an environmental
change, or study the changes in a list of all the behavior
patterns isolated by SEE, vis-a-vis a pharmacological chal-
lenge. In a recent study performed with SEE, BALB/cJtau
ranked significantly lower than C57BL/6Jtau mice in eight
endpoints that could be interpreted to signify stressful beha-
vior (e.g. shorter duration of lingering episodes, lower maxi-
mal speed of lingering episodes, shorter spatial spread of
lingering episodes, lower activity at onset and during first
half of session, lower diversity during first half of session;
[5,17]). The lower lingering values appear to reflect the
BALB/cJtau mice’s paucity of scans, both in number and
type, during stops. Together with a late onset of activity,
these values show lower mobility (a systematically justified
construct described in Ref. [31]) which could in turn be
argued to embody higher anxiety. Are the nine differences
between the two mouse strains differentially sensitive to a
change in the lighting conditions of the arena or to conven-
tional and novel anxiolytic agents? Can the administration

of an anxiolytic drug to the C57BL/6Jtau mice turn them
into BALB/cJtau-like mice? By manipulating the environ-
mental and the pharmacological parameters it might become
possible to isolate each of the input key variables that are
actually controlled by the animals during presumed states of
anxiety [33].

The notion of place plays a central role in the neuros-
ciences, in the fields of spatial memory [50,61,72,73], navi-
gation (e.g. [24,40,67]), and the study of the hippocampus
(e.g. [45,53,58]), yet there is no definition of the behavior
that marks a place. In our hooded rats, lingering appears to
be clustered around a small number of spatially distinct
locations, including that of the home base (see Fig. 1).
This suggests that lingering behavior marks places in this
rat’s operational world. Such a notion of place (as distinct
from the notion of location, which would refer to any parti-
cular pair of coordinates in space) is obtained through the
study of the geographical clustering of lingering episodes. It
has the advantage of being defined precisely in terms of
behavior, so that we do not have to set an a priori size for
a place (as a set of coordinates circumscribed by an arbitrary
radius). For instance, a place situated at the home base could
be spatially extended much more than, say, a less familiar
place. The validity of a place should be further supported by
its connectivity to other places via movement-segments, or
the performance of incoming ballistic movement-segments
from relatively long distances (see Fig. 6). A preliminary
impression suggests that unlike hooded rats who establish,
in addition to the home base, several principal places [64],
mice lingering episodes are much less, if at all, clustered
geographically. Once we have at hand a geographical defi-
nition of places, it would be interesting to monitor simulta-
neously a rat’s location and place-cells activity in the
hippocampus and then examine the correspondence
between behaviorally and electrophysiologically defined
place fields.

As illustrated in the current paper the SEE methodology
includes five steps.

1. Acquiring data, preferably at a rate of 25-30 Hz, and not
lower than ~10 Hz, smoothing (Robust Lowess, [9]),
computation of speeds, and segmentation of the data
time-series into modes of motion [16].

2. Searching for patterns by visualization and preliminary
analysis of the data on a manageable number of subjects.
For example: do the animals have a home base, is there
an asymmetry between arrivals to and departures from
the home base, is there an increase in the length of
progression segments within and/or across sessions?

3. Defining the quantity that captures the pattern. For exam-
ple, the proportion of cumulative time spent at the home
base, the number of visits to the home base, the slope of a
regression line measuring the increase in progression
segments length and excursion length, or the median
maximal speed of progression and of lingering segments.

4. Computing the values of such measures on various
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cross-sections of the database. For example: early activ-
ity, diversity during first half of session versus second
half.

5. Assessing the dependency between already established
measures. For example: what is the empirical relation-
ship between activity and diversity, or between move-
ment segment length and excursion length?

6. Distinguishing between true and false discoveries in the
context of multiple comparisons [4].

In a previous study, we focused on the segmentation of the
data into modes of motion [16]. In this study, we focused on
the second step of visualization and preliminary analysis. In
forthcoming studies, we treat in detail the 4th—6th steps,
phenotyping the behavior of C57BL/6Jtau and Balb/cJtau
mice [5,17—-19]. This last study provides a list of behavioral
endpoints that are compared across the two strains. After
taking into account the False Discovery Rate of Benjamini
and Hochberg [4], 11 out of 19 endpoints were found to
differ significantly, controlling for a 0.05 level of signifi-
cance. These were: early (first 5 min) activity in movement
segments; overall early activity (first 5 min); lingering
speed; number of stops per meter; spatial spread of lingering
episodes; duration of stops; movement segment speed; early
minus late diversity; early minus late activity; spatial spread
of movement segments; and overall activity. One advantage
of this methodology is the large number of ethologically
relevant parameters obtained from a single experiment.

A prerequisite for the full applicability of SEE is the
validity of the segmentation procedure [16]. So far, segmen-
tation has been validated in several strains of rats and mice
in different arena sizes (6.5 m diameter, 3.20 m diameter,
2.50 m diameter, 1.40X 1.40 m, and 60 X 60 cm), with
various tracking systems (our own custom built video track-
ing system, Noldus’s Ethovision™, AR Cools lab custom
designed tracking system, and Photobeam tracking [39], in
several contexts (e.g. daylight versus total darkness condi-
tions), and in four laboratories.

The mouse study is part of a larger scale project
committed to the isolation and quantification of patterns
of exploratory behavior in 17 of the most common wild
type mouse strains. The software developed in the course
of this process, a standard experimental protocol and
endpoint tables, as well as the raw data will all be available
on the web. The overall aim is to create a freely accessible
web-based genetic repository of analyzed behavior together
with tools for the high-throughput analysis of behavior in
other strains and preparations. The collection of SEE func-
tions will be made accessible to all researchers through the
web. We anticipate that with time, old functions will be
refined, and new functions will be formalized and added,
especially if other researchers use SEE. In such a case, its
most up-to-date version would be placed on the web, includ-
ing both the old and the new functions, each ascribed to its
corresponding authors. For a Mathematica 4.0 version of
this paper in the form of a working manual including data,

a package with all the necessary SEE functions, and the
commands that generate the visualizations presented
in this paper as well as additional visualizations see the
Introduction.
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Appendix
A.l. Prerequisite computations and file naming conventions

The use of the visualization and quantification functions
presupposes stages of data acquisition, data smoothing, and
data segmentation as well as the organization of their output
into a structured system of files.

A.l1.1. Data acquisition
For each session, the output of the data acquisition stage
should be a file consisting of the time series {{#;, x1, y1}, {f,

X2, y2}9 }

1. The time coordinates should be integers, expressing time
units corresponding to the maximal temporal resolution
of the system.

2. The coordinates should be real Cartesian coordinates (as
opposed to screen coordinate), expressed in centimeters
relative to a frame of reference having as origin the
center of symmetry of the experimental arena.

3. The sampling rate should be at least 10 Hz. Such a
sampling rate is necessary for computing meaningful
velocities.

A.1.2. Data smoothing

The time series of coordinates {{#, x;, y;}} is generally
noisy, partly arising from the characteristics of the data
acquisition device. In automatic tracking of the moving
animal from a video record, for example, noise may be
generated by a mechanical jitter of the video equipment,
fluctuations of luminosity in the arena, and numerical
rounding errors of the tracking algorithm.

We first de-noise the data by applying a robust smoothing
algorithm (Robust Lowess; [9]. Once the data are smoothed,
velocities can be meaningfully computed and a threshold for
arrest can be determined. Such a threshold is necessary for
the subsequent segmentation of the data series into modes of
motion.

Given that there is a trade-off between efficiency and
resolution: (i) the tracking rates we choose range between
10 and 25 frames in the European PAL video standard and
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10-30 fps in the American NTSC video system; (ii) we
smooth the data with a ~0.7s to a ~1.3 s time window;
and (iii) we use a 3rd or 4th polynomial to represent the
raw data time series. Simultaneous use of the lowest values
of these three parameters generates too noisy data, capturing
only stops whose duration is 0.5 s or more. Simultaneous
use of the highest values generates a nicely smoothed time
series, representing a set of events, such as stops, whose
duration is 0.2 s or more. This might be less necessary in
the rat and more appropriate in the mouse. A systematic
study of the effects of different smoothing methods and
parameters on the cutoff of noise level, on the cutoff
between lingering and movement segments and on other
results is under way.

A.1.3. Data segmentation

A.1.3.1. Episodes of motion The input to this phase should
be the smoothed data time series, whereas the output is a
sequence {{my, ni}, {my,n,}, ...} where each m; is the index
of the beginning of a motion episode, and #; the index of its
end. Determining a threshold for absolute arrest (zero velo-
city) and defining episodes of motion as intervals where no
arrest occurs does this. For example, {102, 150} designates
an episode of motion starting at the 102nd data point in the
original time series, and ending at the 150th data point.

A.1.3.2. Lingering and progression segments Each episode
of motion is characterized by its maximal velocity. The
population of maximal velocities is then analyzed for
multi-modality, and thresholds for the transition from one
mode to the next can then be rigorously determined and
used to characterize each of the components [16].

A.1.3.3. Gaussian model and EM algorithm The Gaussian
mixture model is used for recognizing distinct components
within a population. In analogy, in electrophoresis, a
mixture of distinct proteins ideally yields a perfect
separation of the mixture into its components, i.e. all the
molecules of each component lie precisely at a distance
determined by their specific mass. In practice, however, the
distance a particular molecule travels is affected by, e.g.
convection. As a result, the distances traveled by each type
of molecule form a Gaussian. When plotting concentration
against distance from origin, one gets a single curve
showing peaks corresponding to the medians of each
Gaussian. Given a mixture, be it of proteins or of distinct
components of speed maxima in a frequency distribution
curve, the number of peaks in the curve corresponds to the
number of components. The actual proportion of each
component can be estimated by fitting a Gaussian mixture
model to the empirical curve. This model consists of a sum
of distinct Gaussians weighted by their corresponding
proportions. The proportions of the components in the
mixture are then calculated by determining the values of
the proportions that give maximum likelihood to the model.

The Expectation-Maximization (EM) algorithm [25]
estimates the maximum likelihood parameters (proportions,
means, and standard deviations) of a mixture with a given
number of Gaussians. EM is an iterative algorithm that
starts with user-given initial values, and incrementally
improves the likelihood function until further iterations
yield only a negligible improvement. The actual number of
components of the model is determined by comparing the
maximum likelihood value of an n-components mixture
with that of an (n — 1)-component mixture until the
increased number of components increases the likelihood
only marginally. (For further details see Ref. [16].

A.1.4. File system and naming conventions

A good choice of naming conventions for the diverse files
we need for visualization and analysis is necessary in order
to produce graphs and compute endpoints for any subset of
the database (e.g. all the sessions of a given animal, all the
second sessions of all animals in a given project etc.). We
therefore adopted the following conventions: all data files
are stored in a directory C:\See data C:\Seedata, each
session’s data (i.e. the time series issuing from the data
acquisition process) is stored as projectname_ratname_
session number.dat.

The episodes of motion are stored as projectname_ratname_
session number.mot. The velocities are stored as projectname_
ratname_session number.spd. The maximal values of the
velocities within each episode of motion are stored as
projectname_ratname_session number.max. The thresh-
olds obtained in the classification process are saved as.
projectname_ratname_session number.thr.

Thanks to these conventions, all the files pertaining to
a given animal are easily definable. This is exploited in
the implementation of the function ‘Load[name]’, which
loads in memory all the files computed for a given animal.
The Mathematica pattern matching facilities are further
used in the function Script[list of computations, list of
files]; this function computes a user defined list of
quantities computable from the files pertaining to an animal,
across a list of files. Thus: Script[‘{Diversity[TimeSlice
[lingering, 300]], Median[SpatialSpread[movesegments]]}’,
FileNames [‘hooded 99_*_3"]] would compute the dynamics
of diversity by 5 min slices and the median of the spatial spread
of progression segments, for all the files corresponding to the
third session of any animal in the project called hooded 99.

A.2. A formal description of SEEThe following is a
collection of the data objects and functions that constitute
SEE. A full practical guide to the operation of the software,
as well as the implemented code is available upon request
from the authors (note that one needs a working copy of
Mathematica 4 in order to use the software).

A.2.1. Elementary data objects
Once a data set has been loaded through use of the Load
function, all the variables refer implicitly to that data set.
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data consists of a time series of the form {t, x, y, v}, where ¢
is the time, x, y are the Cartesian coordinates and v
is the absolute velocity.

contour2d represents the contour of the experimental
arena viewed in two dimensions.

contour3d represents the contour of the experimental
arena viewed in three dimensions (this is used to
display phase plots).

motions consist of a list of couples {m, n,}. m, n are the
indexes of the beginning and end of an episode of
motion.

maxima consists of a list of the maxima of speed for the
episodes of motion.

thresholds consists of alist {7, ,, ...}, where t; is the noise
level, and each subsequent ¢; is the threshold separ-
ating the i-th component from the i + 1-th in the
multi-modal analysis of the maxima.

movesegments consists of couples {m, n}, the indexes of
the beginning and end of progression segments
which are not of the lingering type.

lingering consists of couples {m, n}, the indexes of the
beginning and end of a lingering segment.

reallingering consists of couples {m, n}, the indexes of the
beginning and end of a lingering segment longer
than 0.2 s.

highspeedsegments consists of couples {m, n}, the
indexes of the beginning and end of a segment
whose maximal value of speed is above the third
threshold (if there is one).

midspeedsegments consists of couples {m, n}, the indexes
of the beginning and end of a segment whose maxi-
mal value of speed is above the second threshold
and below the third (if there is one).

stopindex consists of the indices of beginnings of arrests or
lingering episodes.

startingpoints consists of the indices of beginnings of
movesegments.

endingpoints consists of the indices of ends of move-
segments.

These data objects reflect our choice of fundamental units of
analysis. Different constructs defined in terms of these
elementary objects will be visualized and/or computed
with the help of the elementary operators.

A.2.2. Elementary operators

Besides data objects pertaining to the loaded session, SEE
loads a list of definitions of operators that permit the defini-
tion of various aspects of the data. Most of them have been
illustrated in the previous sections of the paper. For the sake
of completeness we will list all the operators with a brief
description of their function.

Distance[{x, y}, {u,v}] gives the Euclidian distance
between the points {x,y} and {u,v}.
CarttoPolar[{x,y}] translates the Cartesian coordinates

{x,y} to polar ones ({radius, angle}).

SpatialSpread[{m, n}] gives the maximal distance between
any two points belonging to the segment {m, n}.

Activity[{m, n}] gives the total mileage in the segment {m,
n}.

MaxSpeed[{m, n}] gives the maximal speed in the
segment {m, n}.

AverageSpeed{m, n}] gives the average speed in the
segment {m, n}.

Balisticity[{m, n}] is a number between 0 and 1 computed
from the oscillations of speed within the segment
{m, n}. This number expresses the magnitude of
changes of sign in the acceleration profile as
compared to that of a maximally smooth trajectory
(which has balisticity value 1 by convention). We
use this as an indicator of the pre-planned nature of
a segment.

From[{x, y}, d] gives the list of segments which start from
a point within a distance d from {x, y}.

To[{x,y},d] gives the list of segments which end at a point
within a distance d from {x, y}.

StrictlyFrom([{x, y}, d] gives the list of segments which
start from a point within a distance d from {x, y},
but do not end there.

StrictlyTo[{x, y}, d] gives the list of segments which end
at a point within a distance d from {x, y}, but do not
start there.

PolarFrom[{ro, teta}, dro, dteta] gives the list of segments
which start from the sector of angle 2*dteta and
radii ro — dro, ro + dro, centered at the point {ro,
teta}.

PolarTo[{ro, teta}, dro, dteta] gives the list of segments
which end in the sector of angle 2*dteta and radii
ro — dro, ro + dro centered at the point {ro, teta}.

PolarStrictlyFrom|[ {ro, teta}, dro, dteta] gives the list of
segments which start from the sector of angle
2*dteta and radii ro — dro, ro + dro, centered at
the point {ro, teta}, but do not end there.

PolarStrictlyTo[{ro, teta}, dro, dteta] gives the list of
segments which end in the sector of angle
2*dteta and radii ro — dro, ro + dro, centered at
the point {ro, teta}, but do not start there.

Excursions[{x, y}, d] computes the excursions relative to a
home base centered at {x, y} and of radius d. In
other words, it computes the decomposition of the
path of the animal into units consisting of round
trips from the home base. The result is a list of lists
of segments, and in each list of segments the first
segment starts within the defined area of reference
and the last segment ends in the same area, with no
intervening stops at the area of reference.

TimeSlice[list of segments, dr] partitions the list of
segments into segments which occur in successive
time slices of duration df (i.e. the first sub-list
consists of those segments in list of segments
which occur between 0 and dz, the second of
those between dr and 2*d¢, etc.).
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A.2.3. Graphical operators

The graphical functions of SEE compute graphical
objects through the use of the elementary data objects and
the elementary operators. Any of these graphical objects, or
combination of them, is displayed on the screen by applying
the main function See.

PathPlot[{m, n}] returns a graphics object which repre-
sents the path traced through the segment {m, n}.

PointPlot[{m1, m2, ..., mk}] returns a graphics object
which represents the locations of the data points
ml, ..., mk.

TimePlot[list of segments, display factor:50] returns a
graphics object which represents the dwell time
in each of the segments of the list by a circle.
The circle is centered at the beginning of each
segment, its area is proportional to the relative
dwell time in the segment (relative to the sum of
the dwell times over all the list of segments). The
display factor controls the total area of the circles;
it can be increased or decreased to make the visual
display clearer, its default value is set to 50.

PairPlot[list of segments] returns a graphics object which
represents the graph formed by the lines connect-
ing the extremities of each segment in the list.

SpeedPairPlot[list of segments] returns a graphics object
which represents the graph formed by the lines
connecting the extremities of each segment in the
list, with a color coding designating the maximal
speed in each segment. The color-coding is relative
to the maximal speed obtaining within all the
segments (the redder the faster), or, as in Speed-
PairPlot2, relative to a cutoff velocity distinguish-
ing between the upper quartile velocities (in red)
and the lower 3 quartiles (in black).

PhasePlot[{m, n}] returns a graphics object which repre-
sents the graph formed by the path between data
point m and n, together with the velocity plotted in
the third dimension. The time course of the path is
color-coded (from yellow = beginning to red =
end). The velocity is represented in azure, with
red dotted lines projecting on the position plane
to facilitate visualization.

AnimSeg|k, list of segments] returns a graphics object
which represents the path formed by the k-th
segment of the list of segments, on the background
of the preceding ones. The path of the k-th segment
is colored to code time (from yellow = beginning,
to red = end). The paths of the segments up to the
k-th are represented in gray. This function is
mainly useful for creating animations of successive
segments within a given list.

See[x], where x is a graphics object displays x on the
screen, within the context of contour2d or
contour3d. This is the function used for displaying

graphics objects computed by the preceding func-
tions, or a combination of any number of them.
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